Have a personal or library account? Click to login
Response of Lyapunov exponents to diffusion state of biological networks Cover

Response of Lyapunov exponents to diffusion state of biological networks

Open Access
|Dec 2020

References

  1. Abarbanel, H. (2012). Analysis of Observed Chaotic Data, Springer Science, New York, NY.
  2. Abarbanel, H.D., Brown, R., Sidorowich, J.J. and Tsimring, L.S. (1993). The analysis of observed chaotic data in physical systems, Reviews of Modern Physics65(4): 1331.10.1103/RevModPhys.65.1331
  3. Albert, R. and Barabási, A.-L. (2002). Statistical mechanics of complex networks, Reviews of Modern Physics74(1): 47.10.1103/RevModPhys.74.47
  4. Alm, E. and Arkin, A.P. (2003). Biological networks, Current Opinion in Structural Biology13(2): 193–202.10.1016/S0959-440X(03)00031-9
  5. Altuntaş, V. and Gök, M. (2017). The stability and fragility of biological networks: Eukaryotic model organism saccharomyces cerevisiae, International Conference on Computer Science and Engineering (UBMK), Antalya, Turkey, pp. 116–118.
  6. Altuntaş, V. and Gök, M. (2020). Protein–protein etkileşimi tespit yöntemleri, veri tabanları ve veri güvenilirliği, Avrupa Bilim ve Teknoloji Dergisi (19): 722–733.10.31590/ejosat.724390
  7. Altuntas, V., Gök, M. and Kahveci, T. (2018). Stability analysis of biological networks’ diffusion state, IEEE/ACM Transactions on Computational Biology and Bioinformatics11(4): 1406–1418.
  8. Borgatti, S.P. (2005). Centrality and network flow, Social Networks27(1): 55–71.10.1016/j.socnet.2004.11.008
  9. Can, T.,Çamoǧlu, O. and Singh, A.K. (2005). Analysis of protein-protein interaction networks using random walks, Proceedings of the 5th International Workshop on Bioinformatics, Chicago, IL, USA, pp. 61–68.
  10. Cao, L. (1997). Practical method for determining the minimum embedding dimension of a scalar time series, Physica D: Nonlinear Phenomena110(1–2): 43–50.10.1016/S0167-2789(97)00118-8
  11. Cao, M., Zhang, H., Park, J., Daniels, N.M., Crovella, M.E., Cowen, L.J. and Hescott, B. (2013). Going the distance for protein function prediction: A new distance metric for protein interaction networks, PloS One8(10): e76339.10.1371/journal.pone.0076339380681024194834
  12. Chatr-Aryamontri, A., Breitkreutz, B.-J., Oughtred, R., Boucher, L., Heinicke, S., Chen, D., Stark, C., Breitkreutz, A., Kolas, N., O’Donnell, L., Reguly, T., Nixon, J., Ramage, L., Winter, A., Sellam, A., Chang, C., Hirschman, J., Theesfeld, C., Rust, J., Livstone, M.S., Dolinski, K. and Tyers, M. (2015). The BioGRID interaction database: 2015 Update, Nucleic Acids Research43(D1): D470–D478.10.1093/nar/gku1204438398425428363
  13. Cho, H., Berger, B. and Peng, J. (2015). Diffusion component analysis: Unraveling functional topology in biological networks, International Conference on Research in Computational Molecular Biology, Warsaw, Poland, pp. 62–64.
  14. Erten, S., Bebek, G. and Koyutürk, M. (2011). VAVIEN: An algorithm for prioritizing candidate disease genes based on topological similarity of proteins in interaction networks, Journal of Computational Biology18(11): 1561–1574.10.1089/cmb.2011.0154321610022035267
  15. Freeman, L.C. (1977). A set of measures of centrality based on betweenness, Sociometry40(1): 35–41.10.2307/3033543
  16. Freeman, L.C., Borgatti, S.P. and White, D.R. (1991). Centrality in valued graphs: A measure of betweenness based on network flow, Social Networks13(2): 141–154.10.1016/0378-8733(91)90017-N
  17. Gabr, H. and Kahveci, T. (2015). Signal reachability facilitates characterization of probabilistic signaling networks, BMC Bioinformatics16(17): S6.10.1186/1471-2105-16-S17-S6467488126679404
  18. Gabr, H., Rivera-Mulia, J.C., Gilbert, D.M. and Kahveci, T. (2015). Computing interaction probabilities in signaling networks, EURASIP Journal on Bioinformatics and Systems Biology2015(1): 10.10.1186/s13637-015-0031-8464259926587014
  19. Gao, J. (2012). Multiscale analysis of biological data by scale-dependent Lyapunov exponent, Frontiers in Physiology2: 110.10.3389/fphys.2011.00110326495122291653
  20. Gök, M., Koçal, O.H. and Genç, S. (2016). Prediction of disordered regions in proteins using physicochemical properties of amino acids, International Journal of Peptide Research and Therapeutics22(1): 31–36.10.1007/s10989-015-9481-9
  21. Hagberg, A., Swart, P. and Schult, D. (2008). Exploring network structure, dynamics, and function using network, Technical report, Los Alamos National Lab., Los Alamos, NM.
  22. Han, Q. and Wang, P. (2007). Estimation of the largest Lyapunov exponent of the HRV signals, Journal of Biomedical Engineering24(4): 732–735.
  23. He, H., Lin, D., Zhang, J., Wang, Y.-P. and Deng, H.-W. (2017). Comparison of statistical methods for subnetwork detection in the integration of gene expression and protein interaction network, BMC Bioinformatics18(1), Article no. 149.
  24. Hegger, R., Kantz, H. and Schreiber, T. (1999). Practical implementation of nonlinear time series methods: The TISEAN package, Chaos: An Interdisciplinary Journal of Nonlinear Science9(2): 413–435.10.1063/1.16642412779839
  25. Holme, P., Kim, B.J., Yoon, C.N. and Han, S.K. (2002). Attack vulnerability of complex networks, Physical Review E65(5): 056109.10.1103/PhysRevE.65.05610912059649
  26. Jeong, H., Qian, X. and Yoon, B.-J. (2016). Effective comparative analysis of protein–protein interaction networks by measuring the steady-state network flow using a Markov model, BMC Bioinformatics17(13): 395.10.1186/s12859-016-1215-2507394527766938
  27. Kennel, M.B., Brown, R. and Abarbanel, H.D. (1992). Determining embedding dimension for phase-space reconstruction using a geometrical construction, Physical Review A45(6): 3403.10.1103/PhysRevA.45.3403
  28. Koçal, O.H., Yuruklu, E. and Avcibas, I. (2008). Chaotic-type features for speech steganalysis, IEEE Transactions on Information Forensics and Security3(4): 651–661.10.1109/TIFS.2008.2004289
  29. Köhler, S., Bauer, S., Horn, D. and Robinson, P.N. (2008). Walking the interactome for prioritization of candidate disease genes, The American Journal of Human Genetics82(4): 949–958.10.1016/j.ajhg.2008.02.013242725718371930
  30. Li, F., Li, P., Xu, W., Peng, Y., Bo, X. and Wang, S. (2010). Perturbationanalyzer: A tool for investigating the effects of concentration perturbation on protein interaction networks, Bioinformatics26(2): 275–277.10.1093/bioinformatics/btp63419914922
  31. Li, Y., Wang, H. and Meng, X. (2019). Almost periodic synchronization of fuzzy cellular neural networks with time-varying delays via state-feedback and impulsive control, International Journal of Applied Mathematics and Computer Science29(2): 337–349, DOI: 10.2478/amcs-2019-0025.10.2478/amcs-2019-0025
  32. Liu, K., Wang, H. and Xiao, J. (2015). The multivariate largest Lyapunov exponent as an age-related metric of quiet standing balance, Computational and Mathematical Methods in Medicine2015, Article ID 309756.10.1155/2015/309756444393726064182
  33. Nazarimehr, F., Jafari, S., Golpayegani, S.M.R.H. and Sprott, J. (2017). Can Lyapunov exponent predict critical transitions in biological systems?, Nonlinear Dynamics88(2): 1493–1500.10.1007/s11071-016-3325-9
  34. Newman, M. (2018). Networks, Oxford University Press, Oxford.10.1093/oso/9780198805090.001.0001
  35. Perez, C. and Germon, R. (2016). Graph creation and analysis for linking actors: Application to social data, in R. Layton and P. Watters (Eds), Automating Open Source Intelligence, Elsevier, Waltham, pp. 103–129.10.1016/B978-0-12-802916-9.00007-5
  36. Ruiz, D. and Finke, J. (2019). Lyapunov-based anomaly detection in preferential attachment networks, International Journal of Applied Mathematics and Computer Science29(2): 363–373, DOI: 10.2478/amcs-2019-0027.10.2478/amcs-2019-0027
  37. Sano, M. and Sawada, Y. (1985). Measurement of the Lyapunov spectrum from a chaotic time series, Physical Review Letters55(10): 1082.10.1103/PhysRevLett.55.108210031723
  38. Serletis, A., Shahmoradi, A. and Serletis, D. (2007). Effect of noise on estimation of Lyapunov exponents from a time series, Chaos, Solitons & Fractals32(2): 883–887.10.1016/j.chaos.2005.11.048
  39. Stelling, J., Sauer, U., Szallasi, Z., Doyle, F.J. and Doyle, J. (2004). Robustness of cellular functions, Cell118(6): 675–685.10.1016/j.cell.2004.09.00815369668
  40. Stumpf, M.P. and Wiuf, C. (2010). Incomplete and noisy network data as a percolation process, Journal of the Royal Society Interface7(51): 1411–1419.10.1098/rsif.2010.0044293560020378609
  41. Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K.P., Kuhn, M., Bork, P., Jensen, L.J., von Mering, C. (2014). STRING v10: Protein–protein interaction networks, integrated over the tree of life, Nucleic Acids Research43(D1): D447–D452.10.1093/nar/gku1003438387425352553
  42. Turinsky, A.L., Razick, S., Turner, B., Donaldson, I.M. and Wodak, S.J. (2010). Literature curation of protein interactions: Measuring agreement across major public databases, Database2010: baq026, DOI:10.1093/database /baq026.
  43. Vocaturo, E. and Veltri, P. (2017). On the use of networks in biomedicine, Procedia Computer Science110: 498–503.10.1016/j.procs.2017.06.132
  44. Watts, D.J. and Strogatz, S.H. (1998). Collective dynamics of ‘small-world’ networks, Nature393(6684): 440.10.1038/309189623998
  45. Yu, D., Kim, M., Xiao, G. and Hwang, T.H. (2013). Review of biological network data and its applications, Genomics & Informatics11(4): 200–210.10.5808/GI.2013.11.4.200389784724465231
  46. Zhang, X., Wang, H. and Yang, Y. (2016). Robustness of indispensable nodes in controlling protein–protein interaction network, arXiv: 1609.02637.
DOI: https://doi.org/10.34768/amcs-2020-0051 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 689 - 702
Submitted on: Apr 20, 2020
Accepted on: Aug 31, 2020
Published on: Dec 31, 2020
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Volkan Altuntas, Murat Gok, Osman Hilmi Kocal, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.