Have a personal or library account? Click to login
On distributed symbolic control of interconnected systems under persistency specifications Cover

On distributed symbolic control of interconnected systems under persistency specifications

Open Access
|Dec 2020

References

  1. Apaza-Perez, W.A., Combastel, C. and Zolghadri, A. (2019). Abstraction-based low complexity controller synthesis for interconnected non-deterministic systems, 18th European Control Conference (ECC), Naples, Italy, pp. 4174–4179.
  2. Belta,C., Yordanov, B. and Göl, E. (2017). Formal Methods for Discrete-Time Dynamical Systems, Springer, Cham.10.1007/978-3-319-50763-7
  3. Borri, A., Pola, G. and Benedetto, M.D.D. (2012). A symbolic approach to the design of nonlinear networked control systems, 15th ACM International Conference on Hybrid Systems: Computation and Control, HSCC’12, Beijing, China, pp. 255–264.
  4. Borri, A., Pola, G. and Benedetto, M.D.D. (2019). Design of symbolic controllers for networked control systems, IEEE Transactions on Automatic Control64(3): 1034–1046.10.1109/TAC.2018.2833630
  5. Chen, Y., Anderson, J., Kalsi, K., Low, S.H. and Ames, A.D. (2019). Compositional set invariance in network systems with assume-guarantee contracts, 2019 American Control Conference (ACC), Philadelphia, PA, USA, pp. 1027–1034.
  6. Coënt, A.L., Fribourg, L., Markey, N., Vuyst, F.D. and Chamoin, L. (2016). Distributed synthesis of state-dependent switching control, in K.G. Larsen et al. (Eds), Reachability Problems, Springer, Cham, pp. 119–133.10.1007/978-3-319-45994-3_9
  7. Dallal, E. and Tabuada, P. (2015). On compositional symbolic controller synthesis inspired by small-gain theorems, 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, pp. 6133–6138.
  8. Dashkovskiy, S.N., Rüffer, B.S. and Wirth, F.R. (2010). Small gain theorems for large scale systems and construction of ISS Lyapunov functions, SIAM Journal on Control and Optimization48(6): 4089–4118.10.1137/090746483
  9. Eqtami, A. and Girard, A. (2019). A quantitative approach on assume-guarantee contracts for safety of interconnected systems, 18th European Control Conference (ECC), Naples, Italy, pp. 536–541.
  10. Ge, X., Yang, F. and Han, Q.L. (2017). Distributed networked control systems: A brief overview, Information Sciences380: 117–131.10.1016/j.ins.2015.07.047
  11. Ghasemi, K., Sadraddini, S. and Belta, C. (2020). Compositional synthesis via a convex parameterization of assume-guarantee contracts, 23rd International Conference on Hybrid Systems: Computation and Control, HSCC’20, Sydney, Australia.10.1145/3365365.3382212
  12. Girard, A., Gössler, G. and Mouelhi, S. (2016). Safety controller synthesis for incrementally stable switched systems using multiscale symbolic models, IEEE Transactions on Automatic Control61(6): 1537–1549.10.1109/TAC.2015.2478131
  13. Girard, A. and Pappas, G.J. (2011). Approximate bisimulation: A bridge between computer science and control theory, European Journal of Control17(5): 568–578.10.3166/ejc.17.568-578
  14. Gruber, F., Kim, E.S. and Arcak, M. (2017). Sparsity-aware finite abstraction, 2017 IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, Australia, pp. 2366–2371.
  15. Henzinger, T.A., Qadeer, S., Rajamani, S.K. and Tasiran, S. (2002). An assume-guarantee rule for checking simulation, ACM Transactions on Programming Languages and Systems24(1): 51–64.10.1145/509705.509707
  16. Jabri, D., Guelton, K., Belkhiat, D.E.C. and Manamanni, N. (2020). Decentralized static output tracking control of interconnected and disturbed Takagi–Sugeno systems, International Journal of Applied Mathematics and Computer Science30(2): 225–238, DOI: 10.34768/amcs-2020-0018.
  17. Jiang, Z.P., Teel, A.R. and Praly, L. (1994). Small-gain theorem for ISS systems and applications, Mathematics of Control, Signals and Systems7(2): 95–120.10.1007/BF01211469
  18. Kamiński, M. (2015). Symbolic computing in probabilistic and stochastic analysis, International Journal of Applied Mathematics and Computer Science25(4): 961–973, DOI: 10.1515/amcs-2015-0069.10.1515/amcs-2015-0069
  19. Kim, E.S., Arcak, M. and Seshia, S.A. (2015). Compositional controller synthesis for vehicular traffic networks, 2015 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, pp. 6165–6171.
  20. Majumdar, R. and Zamani, M. (2012). Approximately bisimilar symbolic models for digital control systems, in P. Madhusudan and S.A. Seshia (Eds), Computer Aided Verification, Springer, Berlin/Heidelberg, pp. 362–377.10.1007/978-3-642-31424-7_28
  21. Mazo, M., Davitian, A. and Tabuada, P. (2010). PESSOA: A tool for embedded controller synthesis, in T. Touili et al. (Eds), Computer Aided Verification, Springer, Berlin/Heidelberg, pp. 566–569.10.1007/978-3-642-14295-6_49
  22. Meyer, P. and Dimarogonas, D.V. (2017). Compositional abstraction refinement for control synthesis under lasso-shaped specifications, 2017 American Control Conference (ACC), Seattle, WA, USA, pp. 523–528.
  23. Meyer, P., Girard, A. and Witrant, E. (2018). Compositional abstraction and safety synthesis using overlapping symbolic models, IEEE Transactions on Automatic Control63(6): 1835–1841.10.1109/TAC.2017.2753039
  24. Mouelhi, S., Girard, A. and Gossler, G. (2013). COSYMA: A tool for controller synthesis using multi-scale abstractions, 16th International Conference on Hybrid Systems: Computation and Control, HSCC’13, Philadelphia, PA, USA, pp. 83–88.
  25. Nilsson, L.P. (2017). Correct-by-Construction Control Synthesis for High-Dimensional Systems, PhD thesis, University of Michigan, Ann Arbor, MI.
  26. Nilsson, P. and Ozay, N. (2020). Control synthesis for permutation-symmetric high-dimensional systems with counting constraints, IEEE Transactions on Automatic Control65(2): 461–476.10.1109/TAC.2019.2910949
  27. Pola, G., Girard, A. and Tabuada, P. (2008). Approximately bisimilar symbolic models for nonlinear control systems, Automatica44(10): 2508–2516.10.1016/j.automatica.2008.02.021
  28. Pola, G., Pepe, P. and Benedetto, M.D.D. (2018). Decentralized supervisory control of networks of nonlinear control systems, IEEE Transactions on Automatic Control63(9): 2803–2817.10.1109/TAC.2017.2775962
  29. Pola, G., Pepe, P., Benedetto, M.D.D. and Tabuada, P. (2010). Symbolic models for nonlinear time-delay systems using approximate bisimulations, Systems & Control Letters59(6): 365–373.10.1016/j.sysconle.2010.04.001
  30. Reissig, G. (2011). Computing abstractions of nonlinear systems, IEEE Transactions on Automatic Control56(11): 2583–2598.10.1109/TAC.2011.2118950
  31. Reissig, G., Weber, A. and Rungger, M. (2017). Feedback refinement relations for the synthesis of symbolic controllers, IEEE Transactions on Automatic Control62(4): 1781–1796.10.1109/TAC.2016.2593947
  32. Rungger, M. and Zamani, M. (2016). Scots: A tool for the synthesis of symbolic controllers, 19th International Conference on Hybrid Systems: Computation and Control, HSCC’16, Vienna, Austria, pp. 99–104.
  33. Saoud, A. (2019). Compositional and Efficient Controller Synthesis for Cyber-Physical Systems, PhD thesis, Université Paris-Saclay, Gif sur Yvette.
  34. Saoud, A., Girard, A. and Fribourg, L. (2019). Assume-guarantee contracts for discrete and continuous-time systems, Preprint, https://hal.archives-ouvertes.fr/hal-02196511.
  35. Saoud, A., Girard, A. and Fribourg, L. (2020). Contract-based design of symbolic controllers for safety in distributed multiperiodic sampled-data systems, IEEE Transactions on Automatic Control, DOI:10.1109/TAC.2020.2992446.10.1109/TAC.2020.2992446
  36. Saoud, A., Jagtap, P., Zamani, M. and Girard, A. (2018). Compositional abstraction-based synthesis for cascade discrete-time control systems, 6th IFAC Conference on Analysis and Design of Hybrid System, Oxford, UK.10.1016/j.ifacol.2018.08.003
  37. Tabuada, P. (2009). Verification and Control of Hybrid Systems, Springer, New York, NY.10.1007/978-1-4419-0224-5
  38. Tazaki, Y. and Imura, J. (2012). Discrete abstractions of nonlinear systems based on error propagation analysis, IEEE Transactions on Automatic Control57(3): 550–564.10.1109/TAC.2011.2161789
  39. Weber, A., Rungger, M. and Reissig, G. (2017). Optimized state space grids for abstractions, IEEE Transactions on Automatic Control62(11): 5816–5821.10.1109/TAC.2016.2642794
  40. Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H. and Murray, R. (2011). Tulip: A software toolbox for receding horizon temporal logic planning, 14th International Conference on Hybrid Systems: Computation and Control, HSCC’11, Chicago, IL, USA, pp. 313–314.
  41. Zamani, M., Esfahani, P.M., Majumdar, R., Abate, A. and Lygeros, J. (2014). Symbolic control of stochastic systems via approximately bisimilar finite abstractions, IEEE Transactions on Automatic Control59(12): 3135–3150.10.1109/TAC.2014.2351652
  42. Zamani, M., Pola, G., Mazo, M. and Tabuada, P. (2012). Symbolic models for nonlinear control systems without stability assumptions, IEEE Transactions on Automatic Control57(7): 1804–1809.10.1109/TAC.2011.2176409
  43. Zhai, G., Chen, N. and Gui, W. (2013). Decentralized design of interconnected H feedback control systems with quantized signals, International Journal of Applied Mathematics and Computer Science23(2): 317–325, DOI:10.2478/amcs-2013-0024.10.2478/amcs-2013-0024
  44. Zolghadri, A., Henry, D. and Monsion, M. (1996). Design of nonlinear observers for fault diagnosis: A case study, Control Engineering Practice4(11): 1535–1544.10.1016/0967-0661(96)00167-0
  45. Zonetti, D., Saoud, A., Girard, A. and Fribourg, L. (2019). A symbolic approach to voltage stability and power sharing in time-varying DC microgrids, 2019 18th European Control Conference (ECC), Naples, Italy, pp. 903–909.
DOI: https://doi.org/10.34768/amcs-2020-0046 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 629 - 639
Submitted on: Feb 3, 2020
Accepted on: Aug 26, 2020
Published on: Dec 31, 2020
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 W. Alejandro Apaza-Perez, Christophe Combastel, Ali Zolghadri, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.