Have a personal or library account? Click to login
Stabilized model reduction for nonlinear dynamical systems through a contractivity-preserving framework Cover

Stabilized model reduction for nonlinear dynamical systems through a contractivity-preserving framework

Open Access
|Dec 2020

References

  1. Aminzare, Z. and Sontag, E.D. (2013). Logarithmic Lipschitz norms and diffusion-induced instability, Nonlinear Analysis: Theory, Methods & Applications83: 31–49.10.1016/j.na.2013.01.001366619123729972
  2. Aminzare, Z. and Sontag, E.D. (2014). Contraction methods for nonlinear systems: A brief introduction and ome open problems, 53rd IEEE Conference on Decision and Control, Los Angeles, CA, USA, pp. 3835–3847.
  3. Astrid, P. (2004). Reduction of Process Simulation Models: A Proper Orthogonal Decomposition Approach, PhD thesis, University of Technology, Eindhoven.
  4. Astrid, P., Weiland, S., Willcox, K. and Backx, T. (2008). Missing point estimation in models described by proper orthogonal decomposition, IEEE Transactions on Automatic Control53(10): 2237–2251.10.1109/TAC.2008.2006102
  5. Banasiak, J. (2020). Logarithmic norms and regular perturbations of differential equations, Annales Universitatis Mariae Curie-Sklodowska, Sectio A: Mathematica73(2): 5–19.10.17951/a.2019.73.2.5-19
  6. Barrault, M., Maday, Y., Nguyen, N.C. and Patera, A.T. (2004). An ‘empirical interpolation’ method: Application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique339(9): 667–672.10.1016/j.crma.2004.08.006
  7. Bartoszewicz, A. and Adamiak, K. (2019). A reference trajectory based discrete time sliding mode control strategy, International Journal of Applied Mathematics and Computer Science29(3): 517–525, DOI: 10.2478/amcs-2019-0038.10.2478/amcs-2019-0038
  8. Benda, M. (1998). A central limit theorem for contractive stochastic dynamical systems, Journal of Applied Probability35(1): 200–205.10.1239/jap/1032192562
  9. Berkooz, G., Holmes, P. and Lumley, J.L. (1993). The proper orthogonal decomposition in the analysis of turbulent flows, Annual Review of Fluid Mechanics25(1): 539–575.10.1146/annurev.fl.25.010193.002543
  10. Blocher, C., Saveriano, M. and Lee, D. (2017). Learning stable dynamical systems using contraction theory, 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jeju, South Korea, pp. 124–129.
  11. Carlberg, K., Tuminaro, R. and Boggs, P. (2015). Preserving Lagrangian structure in nonlinear model reduction with application to structural dynamics, SIAM Journal on Scientific Computing37(2): B153–B184, DOI: 10.1137/140959602.10.1137/140959602
  12. Chaturantabut, S. (2017). Temporal localized nonlinear model reduction with a priori error estimate, Applied Numerical Mathematics119: 225–238.10.1016/j.apnum.2017.02.014
  13. Chaturantabut, S., Beattie, C. and Gugercin, S. (2016). Structure-preserving model reduction for nonlinear port-Hamiltonian systems, SIAM Journal on Scientific Computing38(5): B837–B865, DOI: 10.1137/15M1055085.10.1137/15M1055085
  14. Chaturantabut, S. and Sorensen, D. (2012). A state space error estimate for POD-DEIM nonlinear model reduction, SIAM Journal on Numerical Analysis50(1): 46–63, DOI: 10.1137/110822724.10.1137/110822724
  15. Chaturantabut, S. and Sorensen, D.C. (2010). Nonlinear model reduction via discrete empirical interpolation, SIAM Journal on Scientific Computing32(5): 2737–2764, DOI: 10.1137/090766498.10.1137/090766498
  16. Chaturantabut, S. and Sorensen, D.C. (2011). Application of POD and DEIM on dimension reduction of non-linear miscible viscous fingering in porous media, Mathematical and Computer Modelling of Dynamical Systems17(4): 337–353.10.1080/13873954.2011.547660
  17. Dahlquist, G. (1959). Stability and error bounds in the numerical integration of ordinary differential equations, Transactions of the Royal Institute of Technology (130).
  18. Feng, Z. and Soulaimani, A. (2007). Reduced order modelling based on pod method for 3D nonlinear aeroelasticity, 18th IASTED International Conference on Modelling and Simulation, MS’07, Montreal, Quebec, Canada, pp. 489–494.
  19. Ghasemi, M., Yang, Y., Gildin, E., Efendiev, Y. and Calo, V. (2015). Fast multiscale reservoir simulations using POD-DEIM model reduction, SPE Reservoir Simulation Symposium, Houston, TX, USA.10.2118/173271-MS
  20. Ghavamian, F., Tiso, P. and Simone, A. (2017). POD-DEIM model order reduction for strain-softening viscoplasticity, Computer Methods in Applied Mechanics and Engineering317: 458–479.10.1016/j.cma.2016.11.025
  21. Gurka, R., Liberzon, A. and Hetsroni, G. (2006). POD of vorticity fields: A method for spatial characterization of coherent structures, International Journal of Heat and Fluid Flow27(3): 416–423.10.1016/j.ijheatfluidflow.2006.01.001
  22. Habibi, J., Moshiri, B. and Sedigh, A.K. (2008). Contractive predictive control of mixed logical dynamical hybrid systems, International Journal of Innovative Computing, Information and Control4(6): 1283–1298.
  23. Hairer, E., Nørsett, S.P. and Wanner, G. (1993). Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd Edn, Springer, Berlin.
  24. Hinze, M., Kunkel, M., Steinbrecher, A. and Stykel, T. (2012). Model order reduction of coupled circuit-device systems, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields25(4): 362–377, DOI: 10.1002/jnm.840.10.1002/jnm.840
  25. Hochman, A., Bond, B. and White, J. (2011). A stabilized discrete empirical interpolation method for model reduction of electrical, thermal, and microelectromechanical systems, 48th ACM/EDAC/IEEE Design Automation Conference (DAC), New York, NY, USA, pp. 540–545.
  26. Intawichai, S. and Chaturantabut, S. (2020). A numerical study of efficient sampling strategies for randomized singular value decomposition, Thai Journal of Mathematics: 371–385.
  27. Isoz, M. (2019). POD-DEIM based model order reduction for speed-up of flow parametric studies, Ocean Engineering186: 106083.10.1016/j.oceaneng.2019.05.065
  28. Jouffroy, J. (2005). Some ancestors of contraction analysis, Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, pp. 5450–5455.
  29. Kellems, A.R., Chaturantabut, S., Sorensen, D.C. and Cox, S.J. (2010). Morphologically accurate reduced order modeling of spiking neurons, Journal of Computational Neuroscience28(3): 477–494, DOI: 10.1007/s10827-010-0229-4.10.1007/s10827-010-0229-420300957
  30. Kunisch, K. and Volkwein, S. (2010). Optimal snapshot location for computing POD basis functions, ESAIM: Mathematical Modelling and Numerical Analysis44(3): 509–529.10.1051/m2an/2010011
  31. Lanata, F. and Grosso, A. D. (2006). Damage detection and localization for continuous static monitoring of structures using a proper orthogonal decomposition of signals, Smart Materials and Structures15(6): 1811–1829.10.1088/0964-1726/15/6/036
  32. Lohmiller, W. and Slotine, J.J.E. (1998). On contraction analysis for non-linear systems, Automatica34(6): 683–696.10.1016/S0005-1098(98)00019-3
  33. Lohmiller, W. and Slotine, J.J.E. (2000a). Control system design for mechanical systems using contraction theory, IEEE Transactions on Automatic Control45(5): 984–989.10.1109/9.855568
  34. Lohmiller, W. and Slotine, J.J.E. (2000b). Nonlinear process control using contraction theory, AIChE Journal46(3): 588–596.10.1002/aic.690460317
  35. Lozinskii, S.M. (1958). Error estimates for the numerical integration of ordinary differential equations. Part I, Izvestiya Vysshikh Uchebnykh Zavedenii: Matematika6(5): 52–90, (in Russian).
  36. Peigné, M. and Woess, W. (2011). Stochastic dynamical systems with weak contractivity properties. II: Iteration of Lipschitz mappings, Colloquium Mathematicum125(1): 55–81.
  37. Pham, Q.-C., Tabareau, N. and Slotine, J.-J. (2009). A contraction theory approach to stochastic incremental stability, IEEE Transactions on Automatic Control54(4): 816–820.10.1109/TAC.2008.2009619
  38. Rewieński, M.J. (2003). A Trajectory Piecewise-Linear Approach to Model Order Reduction of Nonlinear Dynamical Systems, PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.
  39. Rewienski, M. and White, J. (2001). A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices, International Conference on Computer-Aided Design, San Jose, CA, USA, p. 252.
  40. Rewienski, M. and White, J. (2003). A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices, IEEE Transactions Computer-Aided Design of Integrated Circuits and Systems22(2): 155–170.10.1109/TCAD.2002.806601
  41. Rewienski, M. and White, J. (2006). Model order reduction for nonlinear dynamical systems based on trajectory piecewise-linear approximations, Linear Algebra and Its Applications415(2–3): 426–454.10.1016/j.laa.2003.11.034
  42. Russo, G. and di Bernardo, M. (2011). On contraction of piecewise smooth dynamical systems, IFAC Proceedings Volumes44(1): 13299–13304.10.3182/20110828-6-IT-1002.02810
  43. Sanjuan, A., Rotondo, D., Nejjari, F. and Sarrate, R. (2019). An LMI-based heuristic algorithm for vertex reduction in LPV systems, International Journal of Applied Mathematics and Computer Science29(4): 725–737, DOI: 10.2478/amcs-2019-0054.10.2478/amcs-2019-0054
  44. Schenone, E. (2014). Reduced Order Models, Forward and Inverse Problems in Cardiac Electrophysiology, Thesis, Université Pierre et Marie Curie Paris VI, Paris, https://tel.archives-ouvertes.fr/tel-01092945.
  45. Simpson-Porco, J.W. and Bullo, F. (2014). Contraction theory on Riemannian manifolds, Systems & Control Letters65: 74–80.10.1016/j.sysconle.2013.12.016
  46. Söderlind, G. (1986). Bounds on nonlinear operators in finite-dimensional Banach spaces, Numerische Mathematik50(1): 27–44, DOI: 10.1007/BF01389666.10.1007/BF01389666
  47. Söderlind, G. (2006). The logarithmic norm: History and modern theory, BIT Numerical Mathematics46(3): 631–652, DOI: 10.1007/s10543-006-0069-9.10.1007/s10543-006-0069-9
  48. Sontag, E.D. (2010). Contractive systems with inputs, in J.C. Willems et al. (Eds), Perspectives in Mathematical System Theory, Control and Signal Processing, Springer, Berlin, pp. 217–228, DOI: 10.1007/978-3-540-93918-4_20.10.1007/978-3-540-93918-4_20
  49. Stanko, Z.P., Boyce, S.E. and Yeh, W.W.-G. (2016). Nonlinear model reduction of unconfined groundwater flow using POD and DEIM, Advances in Water Resources97: 130–143.10.1016/j.advwatres.2016.09.005
  50. Sukuntee, N. and Chaturantabut, S. (2019). Model order reduction for Sine–Gordon equation using POD and DEIM, Thai Journal of Mathematics: 222–256.
  51. Sukuntee, N. and Chaturantabut, S. (2020). Parametric nonlinear model reduction using k-means clustering for miscible flow simulation, Journal of Applied Mathematics2020: 1–12, Article ID 3904606.10.1155/2020/3904606
  52. Ştefănescu, R. and Navon, I.M. (2013). POD/DEIM nonlinear model order reduction of an ADI implicit shallow water equations model, Journal of Computational Physics237: 95–114, DOI: 10.1016/j.jcp.2012.11.035.10.1016/j.jcp.2012.11.035
  53. Volkwein, S. (2008). Model reduction using proper orthogonal decomposition, Lecture notes, University of Konstanz, Konstanz, http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Vorlesung.pdf.
  54. Walther, A., Griewank, A. and Vogel, O. (2003). ADOL-C: Automatic differentiation using operator overloading in C++, PAMM: Proceedings in Applied Mathematics and Mechanics2(1): 41–44.10.1002/pamm.200310011
  55. Wang, D. and Xiao, A. (2015). Dissipativity and contractivity for fractional-order systems, Nonlinear Dynamics80(1–2): 287–294.10.1007/s11071-014-1868-1
  56. Wirtz, D., Sorensen, D. C. and Haasdonk, B. (2014). A posteriori error estimation for deim reduced nonlinear dynamical systems, SIAM Journal on Scientific Computing36(2): A311–A338.10.1137/120899042
DOI: https://doi.org/10.34768/amcs-2020-0045 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 615 - 628
Submitted on: Apr 27, 2020
Accepted on: Oct 13, 2020
Published on: Dec 31, 2020
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Saifon Chaturantabut, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.