Have a personal or library account? Click to login
Two Meta–Heuristic Algorithms for Scheduling on Unrelated Machines with the Late Work Criterion Cover

Two Meta–Heuristic Algorithms for Scheduling on Unrelated Machines with the Late Work Criterion

Open Access
|Sep 2020

References

  1. Abasian, F., Ranjbar, M., Salari, M., Davari, M. and Khatami, S.M. (2014). Minimizing the total weighted late work in scheduling of identical parallel processors with communication delays, Applied Mathematical Modelling38(15): 3975–3986.10.1016/j.apm.2014.01.006
  2. Błażewicz, J. (1984). Scheduling preemptible tasks on parallel processors with information loss, Technique et Science Informatiques3(6): 415–420.
  3. Błażewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Sterna, M. and Weglarz, J. (2019). Handbook on Scheduling: From Theory to Practice, Springer, Cham.10.1007/978-3-319-99849-7
  4. Błażewicz, J. and Finke, G. (1987). Minimizing mean weighted execution time loss on identical and uniform processors, Information Processing Letters24(4): 259–263.10.1016/0020-0190(87)90145-1
  5. Błażewicz, J., Kovalyov, M.Y., Musiał, J., Urbański, A.P. and Wojciechowski, A. (2010). Internet shopping optimization problem, International Journal of Applied Mathematics and Computer Science20(2): 385–390, DOI: 10.2478/v10006-010-0028-0.10.2478/v10006-010-0028-0
  6. Blazewicz, J., Pesch, E. and Sterna, M. (2000). The disjunctive graph machine representation of the job shop scheduling problem, European Journal of Operational Research127(2): 317–331.10.1016/S0377-2217(99)00486-5
  7. Błażewicz, J., Pesch, E., Sterna, M. and Werner, F. (2004). Open shop scheduling problems with late work criteria, Discrete Applied Mathematics134(1): 1–24.10.1016/S0166-218X(03)00339-1
  8. Błażewicz, J., Pesch, E., Sterna, M. and Werner, F. (2005). The two-machine flow-shop problem with weighted late work criterion and common due date, European Journal of Operational Research165(2): 408–415.10.1016/j.ejor.2004.04.011
  9. Błażewicz, J., Pesch, E., Sterna, M. and Werner, F. (2007). A note on the two machine job shop with the weighted late work criterion, Journal of Scheduling10(2): 87–95.10.1007/s10951-006-0005-5
  10. Blazewicz, J., Pesch, E., Sterna, M. and Werner, F. (2008). Metaheuristic approaches for the two-machine flow-shop problem with weighted late work criterion and common due date, Computers & Operations Research35(2): 574–599.10.1016/j.cor.2006.03.021
  11. Chen, R., Yuan, J., Ng, C. and Cheng, T. (2019). Single-machine scheduling with deadlines to minimize the total weighted late work, Naval Research Logistics (NRL)66(7): 582–595.10.1002/nav.21869
  12. Chen, X., Chau, V., Xie, P., Sterna, M. and Błażewicz, J. (2017). Complexity of late work minimization in flow shop systems and a particle swarm optimization algorithm for learning effect, Computers & Industrial Engineering111: 176–182.10.1016/j.cie.2017.07.016
  13. Chen, X., Kovalev, S., Sterna, M. and Błażewicz, J. (2020a). Mirror scheduling problems with early work and late work criteria, Journal of Scheduling, DOI:10.1007/s10951-020-00636-9.10.1007/s10951-020-00636-9
  14. Chen, X., Liang, Y., Sterna, M., Wang, W. and Błażewicz, J. (2020b). Fully polynomial time approximation scheme to maximize early work on parallel machines with common due date, European Journal of Operational Research284(1): 67–74.10.1016/j.ejor.2019.12.003
  15. Chen, X., Sterna, M., Han, X. and Błażewicz, J. (2016). Scheduling on parallel identical machines with late work criterion: Offline and online cases, Journal of Scheduling19(6): 729–736.10.1007/s10951-015-0464-7
  16. Gerstl, E., Mor, B. and Mosheiov, G. (2019). Scheduling on a proportionate flowshop to minimise total late work, International Journal of Production Research57(2): 531–543.10.1080/00207543.2018.1456693
  17. Glover, F. (1989). Tabu search. Part I, ORSA Journal on Computing1(3): 190–206.
  18. Glover, F. (1990). Tabu search. Part II, ORSA Journal on Computing2(1): 4–32.
  19. Graham, R., Lawler, E., Lenstra, J. and Kan, A.R. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey, Annals of Discrete Mathematics5: 287–326.10.1016/S0167-5060(08)70356-X
  20. Hariri, A.M., Potts, C.N. and Van Wassenhove, L.N. (1995). Single machine scheduling to minimize total weighted late work, ORSA Journal on Computing7(2): 232–242.10.1287/ijoc.7.2.232
  21. Holland, J.H. (1962). Outline for a logical theory of adaptive systems, Journal of the ACM9(3): 297–314.10.1145/321127.321128
  22. Kovalyov, M.Y., Potts, C.N. and Van Wassenhove, L.N. (1994). A fully polynomial approximation scheme for scheduling a single machine to minimize total weighted late work, Mathematics of Operations Research19(1): 86–93.10.1287/moor.19.1.86
  23. Kundakcı, N. and Kulak, O. (2016). Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem, Computers & Industrial Engineering96: 31–51.10.1016/j.cie.2016.03.011
  24. Labib, N.S., Danoy, G., Musial, J., Brust, M.R. and Bouvry, P. (2019). Internet of unmanned aerial vehicles—A multilayer low-altitude airspace model for distributed UAV traffic management, Sensors19(21): 4779.10.3390/s19214779
  25. Leung, J.Y. (2004). Minimizing total weighted error for imprecise computation tasks and related problems, in J.Y. Leung (Ed.), Handbook of Scheduling: Algorithms, Models, and Performance Analysis, Chapman and Hall/CRC, Boca Raton, FL.
  26. Lin, B.M. and Hsu, S. (2005). Minimizing total late work on a single machine with release and due dates, SIAM Conference on Computational Science and Engineering, Orlando, FL, USA.
  27. Lin, B.M., Lin, F. and Lee, R. (2006). Two-machine flow-shop scheduling to minimize total late work, Engineering Optimization38(04): 501–509.10.1080/03052150500420439
  28. Lopez-Loces, M.C., Musial, J., Pecero, J.E., Fraire-Huacuja, H.J., Blazewicz, J. and Bouvry, P. (2016). Exact and heuristic approaches to solve the Internet shopping optimization problem with delivery costs, International Journal of Applied Mathematics and Computer Science26(2): 391–406, DOI: 10.1515/amcs-2016-0028.10.1515/amcs-2016-0028
  29. Pesch, E. and Sterna, M. (2009). Late work minimization in flow shops by a genetic algorithm, Computers & Industrial Engineering57(4): 1202–1209.10.1016/j.cie.2009.05.011
  30. Piroozfard, H., Wong, K.Y. and Wong, W.P. (2018). Minimizing total carbon footprint and total late work criterion in flexible job shop scheduling by using an improved multi-objective genetic algorithm, Resources, Conservation and Recycling128: 267–283.10.1016/j.resconrec.2016.12.001
  31. Potts, C.N. and Van Wassenhove, L.N. (1992a). Approximation algorithms for scheduling a single machine to minimize total late work, Operations Research Letters11(5): 261–266.10.1016/0167-6377(92)90001-J
  32. Potts, C.N. and Van Wassenhove, L.N. (1992b). Single machine scheduling to minimize total late work, Operations Research40(3): 586–595.10.1287/opre.40.3.586
  33. Rybarczyk, A., Hertz, A., Kasprzak, M. and Blazewicz, J. (2017). Tabu search for the RNA partial degradation problem, International Journal of Applied Mathematics and Computer Science27(2): 401–415, DOI: 10.1515/amcs-2017-0028.10.1515/amcs-2017-0028
  34. Servranckx, T. and Vanhoucke, M. (2019). A tabu search procedure for the resource-constrained project scheduling problem with alternative subgraphs, European Journal of Operational Research273(3): 841–860.10.1016/j.ejor.2018.09.005
  35. Sterna, M. (2007). Metaheuristics for late work minimization in two-machine flow shop with common due date, Computers & Industrial Engineering52(2): 210–228.10.1016/j.cie.2006.12.004
  36. Sterna, M. (2011). A survey of scheduling problems with late work criteria, Omega39(2): 120–129.10.1016/j.omega.2010.06.006
  37. Talbi, E.-G. (2009). Metaheuristics: From Design to Implementation, Wiley & Sons, Hoboken, NJ.
  38. Whitley, D. (1994). A genetic algorithm tutorial, Statistics and Computing4(2): 65–85.10.1007/BF00175354
  39. Wu, C.-C., Yin, Y., Wu, W.-H., Chen, H.-M. and Cheng, S.-R. (2016). Using a branch-and-bound and a genetic algorithm for a single-machine total late work scheduling problem, Soft Computing20(4): 1329–1339.10.1007/s00500-015-1590-z
  40. Yan, F., Dridi, M. and El Moudni, A. (2013). An autonomous vehicle sequencing problem at intersections, International Journal of Applied Mathematics and Computer Science23(1): 183–200, DOI: 10.2478/amcs-2013-0015.10.2478/amcs-2013-0015
DOI: https://doi.org/10.34768/amcs-2020-0042 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 573 - 584
Submitted on: Feb 20, 2020
Accepted on: Jul 2, 2020
Published on: Sep 29, 2020
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Wen Wang, Xin Chen, Jedrzej Musial, Jacek Blazewicz, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.