Have a personal or library account? Click to login
Fractional Order Tube Model Reference Adaptive Control for a Class of Fractional Order Linear Systems Cover

Fractional Order Tube Model Reference Adaptive Control for a Class of Fractional Order Linear Systems

Open Access
|Sep 2020

References

  1. Aguila-Camacho, N. and Duarte-Mermoud, M.A. (2013). Fractional adaptive control for an automatic voltage regulator, ISA Transactions52(6): 807–815.10.1016/j.isatra.2013.06.00523838259
  2. Aguila-Camacho, N., Duarte-Mermoud, M. and Gallegos, J. (2014). Lyapunov functions for fractional order systems, Communications in Nonlinear Science and Numerical Simulation19(9): 2951–2957.10.1016/j.cnsns.2014.01.022
  3. Ahmad, W. and Abdel-Jabbar, N. (2006). Modeling and simulation of a fractional order bioreactor system, Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and Its Applications, Porto, Portugal, pp. 1–5.
  4. Alikhanov, A.A. (2010). On the stability and convergence of nonlocal difference schemes, Differential Equations46(7): 949–961.10.1134/S0012266110070037
  5. Alikhanov, A.A. (2013). Stability and convergence of difference schemes approximating a two-parameter nonlocal boundary value problem, Differential Equations49(7): 796–806.10.1134/S0012266113070021
  6. Angel, L. and Viola, J. (2018). Fractional order PID for tracking control of a parallel robotic manipulator type delta, ISA Transactions79: 172–188.10.1016/j.isatra.2018.04.01029793737
  7. Bagley, R. (1983). Fractional calculus – a different approach to the analysis of viscoelastically damped structures, AIAA Journal21(5): 741–748.10.2514/3.8142
  8. Balaska, H., Ladaci, S., Schulte, H. and Djouambi, A. (2019). Adaptive cruise control system for an electric vehicle using a fractional order model reference adaptive strategy, IFACPapersOnLine52(13): 194–199.10.1016/j.ifacol.2019.11.096
  9. Balaska, H., Ladaci, S. and Zennir, Y. (2018). Conical tank level supervision using a fractional order model reference adaptive control strategy, Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2018, Porto, Portugal, pp. 224–231.
  10. Benchellel, A., Poinot, T. and Trigeassou, J.-C. (2007). Modelling and identification of diffusive systems using fractional models, in J. Sabatier et al. (Eds), Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Berlin, pp. 213–225.10.1007/978-1-4020-6042-7_15
  11. Bettayeb, M., Mansouri, R., Al-Saggaf, U. and Mehedi, I. (2017). Smith predictor based fractional-order-filter PID controllers design for long time delay systems, Asian Journal of Control19(2): 1–12.10.1002/asjc.1385
  12. Bourouba, B., Schulte, H. and Ladaci, S. (2019). A novel MRAC-based fractional adaptive control design for a class of fractional order linear systems, Proceedings of the 8th International Conference on Systems and Control (ICSC 2019), Marrakesh, Morocco, pp. 303–308.
  13. Charef, A., Assabaa, M., Ladaci, S. and Loiseau, J. (2013). Fractional order adaptive controller for stabilized systems via high-gain feedback, IET Control Theory and Applications7(6): 822–828.10.1049/iet-cta.2012.0309
  14. Chen, L., Basua, B. and McCabe, D. (2016). Fractional order models for system identification of thermal dynamics of buildings, Energy and Buildings133: 381–388.10.1016/j.enbuild.2016.09.006
  15. Cheng, C., Chen, C. and Chiu, G.-C. (2002). Predictive control with enhanced robustness for precision positioning in frictional environment, IEEE/ASME Transactions On Mechatronics7(3): 385–392.10.1109/TMECH.2002.802715
  16. Chittillapilly, R. and Hepsiba, D. (2015). Tube model reference adaptive control for a cylindrical tank system, Proceedings of the International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, pp. 1–4.
  17. Clarke, T., Narahari-Achar, B. and Hanneken, J. (2004). Mittag-Leffler functions and transmission lines, Journal of Molecular Liquids114(1): 159–163.10.1016/j.molliq.2004.02.014
  18. Dadras, S. and Momeni, H. (2010). Control of a fractional-order economical system VIA sliding mode, Physica A389(12): 2434–2442.10.1016/j.physa.2010.02.025
  19. Djebbri, S., Ladaci, S., Metatla, A. and Balaska, H. (2020). Fractional-order model reference adaptive control of a multi-source renewable energy system with coupled DC/DC converters power compensation, Energy Systems11(2): 1–41.10.1504/IJPEC.2020.107993
  20. Djouambi, A., Charef, A. and Voda, B. (2008). Fractional order robust control based on Bode’s ideal transfer function, RSJESA, Fractional order systems42: 999–1014.10.3166/jesa.42.999-1014
  21. Duarte-Mermoud, M., Aguila-Camacho, N., Gallegos, J. and Castro-Linares, R. (2015). Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Communications in Nonlinear Science and Numerical Simulation22(1): 650–659.10.1016/j.cnsns.2014.10.008
  22. Goldberger, A., Bhargava, V., West, B. and Mandell, A. (1985). On the mechanism of cardiac electrical stability, Biophysics Journal48(3): 525–528.10.1016/S0006-3495(85)83808-X
  23. He, B.-B., Zhou, H.-C., Kou, C.-H. and Chen, Y.-Q. (2019). Stabilization of uncertain fractional order system with time-varying delay using BMI approach, Asian Journal of Control, DOI: 10.1002/asjc.2193.10.1002/asjc.2193
  24. Ioannou, P. and Sun, J. (1996). Robust Adaptive Control, Prentice-Hall, Englewood Cliffs, NJ.
  25. Ionescu, C., Lopes, A., Copot, D., Machado, J. and Bates, J. (2017). The role of fractional calculus in modelling biological phenomena: A review, Communications in Nonlinear Science and Numerical Simulation51: 141–159.10.1016/j.cnsns.2017.04.001
  26. Kaczorek, T. (2011). Singular fractional linear systems and electrical circuits, International Journal of Applied Mathematics and Computer Science21(2): 379–384, DOI: 10.2478/v10006-011-0028-8.10.2478/v10006-011-0028-8
  27. Kaczorek, T. (2019). Absolute stability of a class of fractional positive nonlinear systems, International Journal of Applied Mathematics and Computer Science29(1): 93–98, DOI: 10.2478/amcs-2019-0007.10.2478/amcs-2019-0007
  28. Kaczorek, T. and Borawski, K. (2016). Fractional descriptor continuous–time linear systems described by the Caputo–Fabrizio derivative, International Journal of Applied Mathematics and Computer Science26(3): 533–541, DOI: 10.1515/amcs-2016-0037.10.1515/amcs-2016-0037
  29. Kamal, S. and Bandyopadhyay, B. (2015). High performance regulator for fractional order systems: A soft variable structure control approach, Asian Journal of Control17(5): 1–5.10.1002/asjc.1008
  30. Ladaci, S. and Bensafia, Y. (2016). Indirect fractional order pole assignment based adaptive control, Engineering Science and Technology, an International Journal19(1): 518–530.10.1016/j.jestch.2015.09.004
  31. Ladaci, S. and Charef, A. (2003). MIT adaptive rule with fractional integration, Proceedings of the CESA 2003 IMACS Multiconference on Computational Engineering in Systems Applications, Lille, France, pp. 1–6.
  32. Ladaci, S. and Charef, A. (2006). On fractional adaptive control, Nonlinear Dynamics43(4): 365–378.10.1007/s11071-006-0159-x
  33. Ladaci, S. and Charef, A. (2012). Fractional order adaptive control systems: A survey, in E. Mitchell and S. Murray (Eds), Classification and Application of Fractals, Nova Science Publishers, Inc., New York, NY, pp. 261–275.
  34. Ladaci, S., Charef, A. and Loiseau, J.J. (2009). Robust fractional adaptive control based on the strictly positive realness condition, International Journal of Applied Mathematics and Computer Science19(1): 69–76, DOI: 10.2478/v10006-009-0006-6.10.2478/v10006-009-0006-6
  35. Ladaci, S., Loiseau, J. and Charef, A. (2006). Using fractional order filter in adaptive control of noisy plants, Proceedings of the International Conference on Advances in Mechanical Engineering And Mechanics, ICAMEM 2006, Hammamet, Tunisia, pp. 1–6.
  36. Li, Y. and Podlubny, I. (2010). Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Computers & Mathematics with Applications59(5): 1810–1821.10.1016/j.camwa.2009.08.019
  37. Lino, P., Maione, G. and Saponaro, F. (2015). Fractional-order modeling of high-pressure fluid-dynamic flows: An automotive application, IFAC-PapersOnLine48(1): 382–387, DOI: 10.1016/j.ifacol.2015.05.093.10.1016/j.ifacol.2015.05.093
  38. Mirkin, B. and Gutman, P.-O. (2013). Tube model reference adaptive control, Automatica49(4): 1012–1018.10.1016/j.automatica.2013.01.022
  39. Mirkin, B., Gutman, P.-O. and Shtessel, Y. (2012). Coordinated decentralized sliding mode MRAC with control cost optimization for a class of nonlinear systems, Journal of the Franklin Institute349(4): 1364–1379.10.1016/j.jfranklin.2011.05.004
  40. Mirkin, B., Gutman, P.-O. and Sjoberg, J. (2011). Output-feedback MRAC with reference model tolerance of nonlinearly perturbed delayed plants, 18th IFAC World Congress, Milan, Italy, pp. 6751–6756.
  41. Moaddy, K., Radwan, A.G., Salama, K., Momani, S. and Hashim, I. (2012). The fractional-order modeling and synchronization of electrically coupled neuron systems, Computers & Mathematics with Applications64(10): 3329–3339.10.1016/j.camwa.2012.01.005
  42. Mondal, D. and Biswas, K. (2011). Performance study of fractional order integrator using single-component fractional order element, IET Circuits Devices & Systems5(4): 334–342, DOI: 10.1049/iet-cds.2010.0366.10.1049/iet-cds.2010.0366
  43. Mondal, R., Chakraborty, A., Dey, J. and Halder, S. (2020). Optimal fractional order PID controller for stabilization of cart-inverted pendulum system: Experimental results, Asian Journal of Control22(3): 1345–1359.10.1002/asjc.2003
  44. Movahhed, A., Shandiz, H. and Sani, S. (2016). Comparison of fractional order modelling and integer order modelling of fractional order buck converter in continuous condition mode operation, Advances in Electrical and Electronic Engineering: Power Engineering and Electrical Engineering14(5): 531–542.10.15598/aeee.v14i5.1635
  45. Muñoz-Vázquez, A., Parra-Vega, V., Sánchez-Orta, A. and Martínez-Reyes, F. (2019). Robust Mittag-Leffler stabilisation of fractional-order systems, Asian Journal of Control, DOI: 10.1002/asjc.2195.10.1002/asjc.2195
  46. Neçaibia, A. and Ladaci, S. (2014). Self-tuning fractional order PIλDμcontroller based on extremum seeking approach, International Journal of Automation and Control8(2): 99–121.10.1504/IJAAC.2014.063361
  47. Neçaibia, A., Ladaci, S., Charef, A. and Loiseau, J. (2015). Fractional order extremum seeking approach for maximum power point tracking of photo-voltaic panels, Frontiers in Energy9(1): 43–53.10.1007/s11708-014-0343-5
  48. Oustaloup, A. (1991). La commande CRONE,Hermès, Paris.
  49. Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, CA.
  50. Rihan, F. (2013). Numerical modeling of fractional-order biological systems, Abstract and Applied Analysis2013(816803): 1–11, DOI: 10.1155/2013/816803.10.1155/2013/816803
  51. Sajewski, L. (2017). Minimum energy control of descriptor fractional discrete-time linear systems with two different fractional orders, International Journal of Applied Mathematics and Computer Science27(1): 33–41, DOI: 10.1515/amcs-2017-0003.10.1515/amcs-2017-0003
  52. Stiassnie, M. (1979). On the application of fractional calculus for the formulation of viscoelastic models, Applied Mathematical Modelling3(4): 300—-302.10.1016/S0307-904X(79)80063-3
  53. Ucar, E., Ozdemir, N. and Altun, E. (2019). Fractional order model of immune cells influenced by cancer cells, Mathematical Modelling of Natural Phenomena14(308): 1–12.10.1051/mmnp/2019002
  54. Vinagre, B., Petras, I., Podlubny, I. and Chen, Y. (2002). Using fractional order adjustment rules and fractional order reference models in model-reference adaptive control, Nonlinear Dynamics29(1–4): 269–279.
  55. Wang, J. (1987). Realizations of generalized Warburg impedance with RC ladder networks and transmission lines, Journal of The Electrochemical Society134(8): 1915––1920.10.1149/1.2100789
  56. Wei, Y., Sun, Z., Hu, Y. and Wang, Y. (2016). On fractional order composite model reference adaptive control, International Journal of Systems Science47(11): 2521–2531.10.1080/00207721.2014.998749
  57. Yakoub, Z., Amairi, M., Chetoui, M., Saidi, B. and Aoun, M. (2015). Model-free adaptive fractional order control of stable linear time-varying systems, ISA Transactions67: 193–207.10.1016/j.isatra.2017.01.02328143655
DOI: https://doi.org/10.34768/amcs-2020-0037 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 501 - 515
Submitted on: Jan 20, 2020
Accepted on: Apr 29, 2020
Published on: Sep 29, 2020
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Hanane Balaska, Samir Ladaci, Abdelbaki Djouambi, Horst Schulte, Bachir Bourouba, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.