Have a personal or library account? Click to login
Approximate State–Space and Transfer Function Models for 2×2 Linear Hyperbolic Systems with Collocated Boundary Inputs Cover

Approximate State–Space and Transfer Function Models for 2×2 Linear Hyperbolic Systems with Collocated Boundary Inputs

Open Access
|Sep 2020

References

  1. Ahmad, I. and Berzins, M. (2001). MOL solvers for hyperbolic PDEs with source terms, Mathematics and Computers in Simulation56(2): 115–125.10.1016/S0378-4754(01)00284-1
  2. Albertos, P. and Sala, A. (2004). Multivariable Control Systems: An Engineering Approach, Springer, London.
  3. Anfinsen, H. and Aamo, O.M. (2018). Adaptive control of linear 2×2 hyperbolic systems, Automatica87: 69–82.10.1016/j.automatica.2017.09.020
  4. Anfinsen, H. and Aamo, O.M. (2019). Adaptive Control of Hyperbolic PDEs, Springer, Cham.10.1007/978-3-030-05879-1
  5. Anfinsen, H., Diagne, M., Aamo, O. and Krstić, M. (2017). Estimation of boundary parameters in general heterodirectional linear hyperbolic systems, Automatica79: 185–197.10.1016/j.automatica.2017.01.015
  6. Arov, D.Z., Kurula, M. and Staffans, O.J. (2012). Boundary control state/signal systems and boundary triplets, in A. Hassi et al. (Eds), Operator Methods for Boundary Value Problems, Cambridge University Press, Cambridge, pp. 73–86.10.1017/CBO9781139135061.005
  7. Bartecki, K. (2013a). Computation of transfer function matrices for 2×2 strongly coupled hyperbolic systems of balance laws, Proceedings of the 2nd Conference on Control and Fault-Tolerant Systems, Nice, France, pp. 578–583.10.1109/SysTol.2013.6693813
  8. Bartecki, K. (2013b). A general transfer function representation for a class of hyperbolic distributed parameter systems, International Journal of Applied Mathematics and Computer Science23(2): 291–307, DOI: 10.2478/amcs-2013-0022.10.2478/amcs-2013-0022
  9. Bartecki, K. (2015a). Abstract state-space models for a class of linear hyperbolic systems of balance laws, Reports on Mathematical Physics76(3): 339–358.10.1016/S0034-4877(15)30037-9
  10. Bartecki, K. (2015b). Transfer function-based analysis of the frequency-domain properties of a double pipe heat exchanger, Heat and Mass Transfer51(2): 277–287.10.1007/s00231-014-1410-5
  11. Bartecki, K. (2016). Modeling and Analysis of Linear Hyperbolic Systems of Balance Laws, Springer, Cham.10.1007/978-3-319-27501-7
  12. Bartecki, K. (2019). Approximation state-space model for 2×2 hyperbolic systems with collocated boundary inputs, 24th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, pp. 513–518.
  13. Bastin, G. and Coron, J.-M. (2016). Stability and Boundary Stabilization of 1-D Hyperbolic Systems, Birkhäuser, Basel.10.1007/978-3-319-32062-5
  14. Callier, F.M. and Winkin, J. (1993). Infinite dimensional system transfer functions, in R.F. Curtain et al. (Eds), Analysis and Optimization of Systems: State and Frequency Domain Approaches for Infinite-Dimensional Systems, Springer, Berlin/Heidelberg, pp. 75–101.10.1007/BFb0115021
  15. Cockburn, B., Johnson, C., Shu, C. and Tadmor, E. (1998). Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Springer, Heidelberg.10.1007/BFb0096351
  16. Coron, J., Li, T. and Li, Y. (2019). One-Dimensional Hyperbolic Conservation Laws and Their Applications, World Scientific, Singapore.10.1142/11153
  17. Curtain, R.F. and Zwart, H. (1995). An Introduction to Infinite-Dimensional Linear Systems Theory, Springer, New York, NY.10.1007/978-1-4612-4224-6
  18. Curtain, R. and Morris, K. (2009). Transfer functions of distributed parameters systems: A tutorial, Automatica45(5): 1101–1116.10.1016/j.automatica.2009.01.008
  19. Deutscher, J. (2017). Finite-time output regulation for linear 2×2 hyperbolic systems using backstepping, Automatica75: 54–62.10.1016/j.automatica.2016.09.020
  20. Doyle, J., Francis, B. and Tannenbaum, A. (1992). Feedback Control Theory, Macmillan, New York, NY.
  21. Emirsajłow, Z. and Townley, S. (2000). From PDEs with boundary control to the abstract state equation with an unbounded input operator: A tutorial, European Journal of Control6(1): 27–49.10.1016/S0947-3580(00)70908-3
  22. Engel, K.-J. and Nagel, R. (2000). One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, NY.
  23. Godlewski, E. and Raviart, P.-A. (1996). Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer, New York, NY.10.1007/978-1-4612-0713-9
  24. Grabowski, P. and Callier, F.M. (2001). Circle criterion and boundary control systems in factor form: Input–output approach, International Journal of Applied Mathematics and Computer Science11(6): 1387–1403.
  25. Gugat, M., Herty, M. and Yu, H. (2018). On the relaxation approximation for 2×2 hyperbolic balance laws, in C. Klingenberg and M. Westdickenberg (Eds), Theory, Numerics and Applications of Hyperbolic Problems I, Springer, Cham, pp. 651–663.10.1007/978-3-319-91545-6_50
  26. Hu, L., Di Meglio, F., Vazquez, R. and Krstić, M. (2016). Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs, IEEE Transactions on Automatic Control61(11): 3301–3314.10.1109/TAC.2015.2512847
  27. Jones, B.L. and Kerrigan, E.C. (2010). When is the discretization of a spatially distributed system good enough for control?, Automatica46(9): 1462–1468.10.1016/j.automatica.2010.06.001
  28. Kitsos, C., Besançon, G. and Prieur, C. (2019). A high-gain observer for a class of 2×2 hyperbolic systems with C1 exponential convergence, IFAC-PapersOnLine52(2): 174–179.10.1016/j.ifacol.2019.08.031
  29. Koto, T. (2004). Method of lines approximations of delay differential equations, Computers & Mathematics with Applications48(1–2): 45–59.10.1016/j.camwa.2004.01.003
  30. Lalot, S. and Desmet, B. (2019). The harmonic response of counter-flow heat exchangers—Analytical approach and comparison with experiments, International Journal of Thermal Sciences135: 163–172.10.1016/j.ijthermalsci.2018.09.010
  31. LeVeque, R. (2002). Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge.10.1017/CBO9780511791253
  32. Levine, W.S. (Ed.) (2011). The Control Systems Handbook: Control System Advanced Methods, Electrical Engineering Handbook, CRC Press, Boca Raton, FL.
  33. Li, H.-X. and Qi, C. (2010). Modeling of distributed parameter systems for applications—A synthesized review from time-space separation, Journal of Process Control20(8): 891–901.10.1016/j.jprocont.2010.06.016
  34. Litrico, X. and Fromion, V. (2009a). Boundary control of hyperbolic conservation laws using a frequency domain approach, Automatica45(3): 647–656.10.1016/j.automatica.2008.09.022
  35. Litrico, X. and Fromion, V. (2009b). Modeling and Control of Hydrosystems, Springer, London.10.1007/978-1-84882-624-3
  36. Maidi, A., Diaf, M. and Corriou, J.-P. (2010). Boundary control of a parallel-flow heat exchanger by input–output linearization, Journal of Process Control20(10): 1161–1174.10.1016/j.jprocont.2010.07.005
  37. Mattheij, R.M.M., Rienstra, S.W. and ten Thije Boonkkamp, J.H.M. (2005). Partial Differential Equations: Modeling, Analysis, Computation, SIAM, Philadelphia, PA.10.1137/1.9780898718270
  38. Partington, J.R. (2004). Some frequency-domain approaches to the model reduction of delay systems, Annual Reviews in Control28(1): 65–73.10.1016/j.arcontrol.2004.01.007
  39. Polyanin, A.D. and Manzhirov, A.V. (1998). Handbook of Integral Equations, CRC Press, Boca Raton, FL.10.1201/9781420050066
  40. Rauh, A., Senkel, L., Aschemann, H., Saurin, V.V. and Kostin, G.V. (2016). An integrodifferential approach to modeling, control, state estimation and optimization for heat transfer systems, International Journal of Applied Mathematics and Computer Science26(1): 15–30, DOI: 10.1515/amcs-2016-0002.10.1515/amcs-2016-0002
  41. Ray, W.H. (1981). Advanced Process Control, McGraw-Hill New York, NY.
  42. Russell, D.L. (1978). Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Review20(4): 639–739.10.1137/1020095
  43. Schiesser, W.E. and Griffiths, G.W. (2009). A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab, Cambridge University Press, New York, NY.10.1017/CBO9780511576270
  44. Shakeri, F. and Dehghan, M. (2008). The method of lines for solution of the one-dimensional wave equation subject to an integral conservation condition, Computers & Mathematics with Applications56(9): 2175–2188.10.1016/j.camwa.2008.03.055
  45. Tucsnak, M. and Weiss, G. (2009). Observation and Control for Operator Semigroups, Birkhäuser, Basel.10.1007/978-3-7643-8994-9
  46. Zavala-Río, A., Astorga-Zaragoza, C.M. and Hernández-González, O. (2009). Bounded positive control for double-pipe heat exchangers, Control Engineering Practice17(1): 136–145.10.1016/j.conengprac.2008.05.011
  47. Zwart, H. (2004). Transfer functions for infinite-dimensional systems, Systems and Control Letters52(3–4): 247–255.10.1016/j.sysconle.2004.02.002
DOI: https://doi.org/10.34768/amcs-2020-0035 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 475 - 491
Submitted on: Feb 12, 2020
Accepted on: May 29, 2020
Published on: Sep 29, 2020
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Krzysztof Bartecki, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.