Have a personal or library account? Click to login
An Intelligent Multimodal Framework for Identifying Children with Autism Spectrum Disorder Cover

An Intelligent Multimodal Framework for Identifying Children with Autism Spectrum Disorder

Open Access
|Sep 2020

References

  1. Achenbach, T. and Rescorla, L. (2000). Manual for the ASEBA Preschool Forms & Profiles, University of Vermount, Burlington, VA.
  2. Al-Jarrah, O.Y., Yoo, P.D., Muhaidat, S., Karagiannidis, G.K. and Taha, K. (2015). Efficient machine learning for big data: A review, Big Data Research2(3): 87–93.10.1016/j.bdr.2015.04.001
  3. Amaral, D.G., Schumann, C.M. and Nordahl, C.W. (2008). Neuroanatomy of autism, Trends in Neurosciences31(3): 137–145.10.1016/j.tins.2007.12.00518258309
  4. Ashwin, C., Hietanen, J.K. and Baron-Cohen, S. (2015). Atypical integration of social cues for orienting to gaze direction in adults with autism, Molecular Autism6(1): 5–14.10.1186/2040-2392-6-5432836225685307
  5. Baron-Cohen, S., Jolliffe, T., Mortimore, C. and Robertson, M. (1997). Another advanced test of theory of mind: Evidence from very high functioning adults with autism or Asperger syndrome, Journal of Child Psychology and Psychiatry38(7): 813–822.10.1111/j.1469-7610.1997.tb01599.x9363580
  6. Bernier, R., Mao, A. and Yen, J. (2011). Diagnosing autism spectrum disorders in primary care, Practitioner255(1745): 27–30.
  7. Chitategmark, M. (2016). Social attention allocation in ASD: A review and meta-analysis of eye-tracking studies, Review Journal of Autism & Developmental Disorders3(3): 209–223.10.1007/s40489-016-0077-x
  8. Christensen, D.L., Baio, J., Braun, K.V.N., Bilder, D., Charles, J., Constantino, J.N., Daniels, J., Durkin, M.S., Fitzgerald, R.T. and Kurziusspencer, M. (2016). Prevalence and characteristics of autism spectrum disorder among children aged 8 years—Autism and developmental disabilities monitoring network, 11 sites, United States, 2012, Morbidity and Mortality Weekly Report—Surveillance Summaries65(3): 1–23.10.15585/mmwr.ss6503a1790970927031587
  9. Constantino, J.N., Kennon-Mcgill, S., Weichselbaum, C., Marrus, N. and Jones, W. (2017). Infant viewing of social scenes is under genetic control and is atypical in autism, Nature547(7663): 340–344.10.1038/nature22999584269528700580
  10. Drimalla, H., Landwehr, N., Baskow, I., Behnia, B. and Scheffer, T. (2018). Detecting autism by analyzing a simulated social interaction, Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Berlin, Germany, pp. 193–208.
  11. Durkin, M., Maenner, M.J., Meaney, F.J., Levy, S.E. and DiGuiseppi, C. (2010). Socioeconomic inequality in the prevalence of autism spectrum disorder: Evidence from a US cross-sectional study, PLoS ONE5(7): e11551.10.1371/journal.pone.0011551290252120634960
  12. Eack, S.M., Mazefsky, C.A. and Minshew, N.J. (2015). Misinterpretation of facial expressions of emotion in verbal adults with autism spectrum disorder, Autism19(3): 308–315.10.1177/1362361314520755413502424535689
  13. Gan, Y.L., Chen, J.Y. and Xu, L.H. (2019). Facial expression recognition boosted by soft label with a diverse ensemble, Pattern Recognition Letters125(4): 105–112.10.1016/j.patrec.2019.04.002
  14. Greene, D.J., Colich, N., Iacoboni, M., Zaidel, E., Bookheimer, S.Y. and Dapretto, M. (2011). Atypical neural networks for social orienting in autism spectrum disorders, Neuroimage56(1): 354–362.10.1016/j.neuroimage.2011.02.031309139121334443
  15. Halim, A., Ford, G., Eric, G. and Wall Dennis, P. (2018). Machine learning approach for early detection of autism by combining questionnaire and home video identification, Journal of the American Medical Informatics Association25(8): 1000–1007.10.1093/jamia/ocy039764688129741630
  16. Hubert, B., Wicker, B., Moore, D.G., Monfardini, E., Duverger, H., Da Fonseca, D. and Deruelle, C. (2007). Brief report: Recognition of emotional and non-emotional biological motion in individuals with autistic spectrum disorders, Journal of Autism and Developmental Disorders37(7): 1386–1392.10.1007/s10803-006-0275-y17160459
  17. Jaiswal, S., Valstar, M.F., Gillott, A. and Daley, D. (2017). Automatic detection of ADHD and ASD from expressive behaviour in RGBD data, IEEE International Conference on Automatic Face & Gesture Recognition, Washington, DC, USA, pp. 762–769.
  18. Jiang, M., Sunday, M., Francis and Srishyla, D. (2019). Classifying individuals with ASD through facial emotion recognition and eye-tracking, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Berlin, Germany, pp. 6063–6068.
  19. Kantavat, P., Kijsirikul, B., Songsiri, P., Fukui, K.-I. and Numao, M. (2018). Efficient decision trees for multi-class support vector machines using entropy and generalization error estimation, International Journal of Applied Mathematics & Computer Science28(4): 705–717, DOI: 10.2478/amcs-2018-0054.10.2478/amcs-2018-0054
  20. Kerrianne, E., Morrison, A.E. and Pinkham, S.K. (2019). Psychometric evaluation of social cognitive measures for adults with autism, Autism Research12(5): 766–778.10.1002/aur.2084649965030770676
  21. Liu, W., Li, M. and Yi, L. (2016). Identifying children with autism spectrum disorder based on their face processing abnormality: A machine learning framework, Autism Research9(8): 888–898.10.1002/aur.161527037971
  22. Manfredonia, J., Bangerter, A., Manyakov, N.V., Ness, S., Lewin, D., Skalkin, A., Boice, M., Goodwin, M. S., Dawson, G. and Hendren, R. (2018). Automatic recognition of posed facial expression of emotion in individuals with autism spectrum disorder, Journal of Autism and Developmental Disorders27(10): 1–15.10.1007/s10803-018-3757-930298462
  23. Müller and Frith, U. (2005). Autism-explaining the enigma, Kindheit Und Entwicklung14(4): 257.10.1026/0942-5403.14.4.257
  24. Parkhi, O., Vedaldi, A. and Zisserman, A. (2015). Deep face recognition, British Machine Vision Conference, Swansea, UK, p. 6.
  25. Poria, S., Cambria, E., Bajpai, R. and Hussain, A. (2017). A review of affective computing: From unimodal analysis to multimodal fusion, Information Fusion37(2): 98–125.10.1016/j.inffus.2017.02.003
  26. Remington, A., Swettenham, J., Campbell, R. and Coleman, M. (2009). Selective attention and perceptual load in autism spectrum disorder, Psychological Science20(11): 1388–1393.10.1111/j.1467-9280.2009.02454.x19843262
  27. Rozga, A., Mumaw, M., King, T. and Robins, D.L. (2009). Lack of emotion-specific facial mimicry responses among high-functioning individuals with an autism spectrum disorder (poster), International Meeting for Autism Research, Chicago, IL, USA, pp. S43–S44.
  28. Rundo, L., Militello, C., Russo, G., Garufi, A., Vitabile, S. and Gilardi, M. (2017a). Automated prostate gland segmentation based on an unsupervised fuzzy c-means clustering technique using multispectral T1w and T2w MR imaging, Information8(2): 1–28.10.3390/info8020049
  29. Rundo, L., Stefano, A., Militello, C., Russo, G., Sabini, M.G. and Arrigo, C. (2017b). A fully automatic approach for multimodal PET and MR image segmentation in Gamma Knife treatment planning, Computer Methods & Programs in Biomedicine144(3): 77–96.10.1016/j.cmpb.2017.03.01128495008
  30. Samad, M.D., Diawara, N., Bobzien, J.L., Harrington, J.W., Witherow, M.A. and Iftekharuddin, K.M. (2018). A feasibility study of autism behavioral markers in spontaneous facial, visual, and hand movement response data, IEEE Transactions on Neural Systems & Rehabilitation EngineeringPP(99): 1–1.
  31. Sasson, N.J. (2006). The development of face processing in autism, Journal of Autism & Developmental Disorders36(3): 381–394.10.1007/s10803-006-0076-316572261
  32. Sasson, N.J., Elison, J.T., Turner-Brown, L.M., Dichter, G.S. and Bodfish, J.W. (2011a). Brief report: Circumscribed attention in young children with autism, Journal of Autism & Developmental Disorders41(2): 242–247.10.1007/s10803-010-1038-3370985120499147
  33. Sasson, N.J., Pinkham, A.E., Carpenter, K.L. and Belger, A. (2011b). The benefit of directly comparing autism and schizophrenia for revealing mechanisms of social cognitive impairment, Journal of Neurodevelopmental Disorders3(2): 87–100.10.1007/s11689-010-9068-x318828921484194
  34. Sasson, N., Tsuchiya, N., Hurley, R., Couture, S.M., Penn, D.L., Adolphs, R. and Piven, J. (2007). Orienting to social stimuli differentiates social cognitive impairment in autism and schizophrenia, Neuropsychologia45(11): 2580–2588.10.1016/j.neuropsychologia.2007.03.009212825717459428
  35. Serra, A., Galdi, P. and Tagliaferri, R. (2018). Machine learning for bioinformatics and neuroimaging, Wiley Interdisciplinary Reviews: Data Mining & Knowledge Discovery8(5): e1248.10.1002/widm.1248
  36. Shaddy, D.J. (2006). Visual scanning and pupillary responses in young children with autism spectrum disorder, Journal of Clinical & Experimental Neuropsychology28(7): 1238–1256.10.1080/1380339050037679016840248
  37. Tariq, Q., Daniels, J. and Schwartz, J.N. (2018). Mobile detection of autism through machine learning on home video: A development and prospective validation study, PLoS Medicine15(11): e1002705.10.1371/journal.pmed.1002705625850130481180
  38. Traynor, J.M., Gough, A., Duku, E., Shore, D.I. and Hall, G.B.C. (2019). Eye tracking effort expenditure and autonomic arousal to social and circumscribed interest stimuli in autism spectrum disorder, Journal of Autism and Developmental Disorders49(1): 1988–2002.10.1007/s10803-018-03877-y30656526
  39. Trevisan, D.A., Hoskyn, M. and Birmingham, E. (2018). Facial expression production in autism: A meta-analysis, Autism Research11(2): 1586–1601.10.1002/aur.203730393953
  40. Wang, G.S., Chen, J.Y. and Zhang, K. (2018). The perception of emotional facial expressions by children with autism using hybrid multiple factorial design and eye-tracking, Chinese Science Bulletin63(31): 3204–3216, (in Chinese).10.1360/N972018-00553
  41. Wang, Y. and Chen, W. (2010). Broken mirror theory of autism, Advances in Psychological Science18(2): 297–305.
  42. Xu, L., Fu, H.Y., Goodarzi, M., Cai, C.B., Yin, Q.B., Wu, Y., Tang, B.C. and She, Y. B. (2018). Stochastic cross validation, Chemometrics & Intelligent Laboratory Systems175(4): 74–81.10.1016/j.chemolab.2018.02.008
  43. Xu, M., Shen, J. and Yu, H.Y. (2017). A review on data-driven healthcare decision-making support, Industrial Engineering and Management21(1): 1–13.
  44. Yi, H., Song, X.F., Jiang, B., Liu, Y.F. and Zhou, Z.H. (2013). Fault diagnosis based on self-tuning support vector machine in sample unbalance condition, Transactions of Beijing Institute of Technology33(4): 394–398.
  45. Yi, L., Feng, C., Quinn, P.C., Ding, H., Li, J., Liu, Y. and Lee, K. (2014). Do individuals with and without autism spectrum disorder scan faces differently? A new multi-method look at an existing controversy, Autism Research7(1): 72–83.10.1002/aur.134024124133
  46. Zhao, S., Uono, S., Yoshimura, S., Kubota, Y. and Toichi, M. (2017). Atypical gaze cueing pattern in a complex environment in individuals with ASD, Journal of Autism Developmental Disorders47(7): 1978–1986.10.1007/s10803-017-3116-228391454
  47. Zhong, S.S., Li, X. and Zhang, Y.J. (2019). Fault diagnosis of civil aero-engine driven by unbalanced samples based on DBN, Journal of Aerospace Power34(3): 708–716.
  48. Zunino, A., Morerio, P. and Cavallo, A. (2018). Video gesture analysis for autism spectrum disorder detection, 24th International Conference on Pattern Recognition (ICPR), Beijing, China, pp. 3421–3426.
  49. Zwaigenbaum, L., Bryson, S., Lord, C., Rogers, S., Carter, A., Carver, L., Chawarska, K., Constantino, J., Dawson, G. and Dobkins, K. (2009). Clinical assessment and management of toddlers with suspected autism spectrum disorder: Insights from studies of high-risk infants, Pediatrics123(5): 1383–1391.10.1542/peds.2008-1606283328619403506
DOI: https://doi.org/10.34768/amcs-2020-0032 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 435 - 448
Submitted on: Oct 25, 2019
Accepted on: Jun 4, 2020
Published on: Sep 29, 2020
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Jingying Chen, Mengyi Liao, Guangshuai Wang, Chang Chen, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.