Have a personal or library account? Click to login
Implementation and Evaluation of Medical Imaging Techniques Based on Conformal Geometric Algebra Cover

Implementation and Evaluation of Medical Imaging Techniques Based on Conformal Geometric Algebra

Open Access
|Sep 2020

References

  1. Ashdown, M. (2018). GA package for Maple, http://www.mrao.cam.ac.uk/~maja1/software/GA/.
  2. Batard, T., Berthier, M. and Saint-Jean, C. (2010). Clifford Fourier transform for color image processing, in E.J. Bayro-Corrochano and G. Scheuermann (Eds), Geometric Algebra Computing in Engineering and Computer Science, Springer, Berlin, pp. 135–161.10.1007/978-1-84996-108-0_8
  3. Bayro-Corrochano, E. and Rivera-Rovelo, J. (2009). The use of geometric algebra for 3D modeling and registration of medical data, Journal of Mathematical Imaging and Vision34(1): 48–60.10.1007/s10851-008-0123-0
  4. Besl, P.J. and McKay, N.D. (1992). A method for registration of 3D shapes, IEEE Transactions on Pattern Analysis and Machine Intelligence14(2): 239–256.10.1109/34.121791
  5. Clifford, W.K. (1882). On the classification of geometric algebras, in R. Tucker (Ed.), Mathematical Papers, Macmillian, London, pp. 397–401.
  6. Dorst, L., Fontijne, D. and Mann, S. (2007). Geometric Algebra for Computer Science: An Object Oriented Approach to Geometry, Morgan Kaufmann, Burlington, MA.10.1016/B978-012369465-2/50004-9
  7. Ebling, J. and Scheuermann, G. (2005). Clifford Fourier transform on vector fields, IEEE Transactions on Visualization and Computer Graphics11(4): 469–479.10.1109/TVCG.2005.5416138556
  8. Fabijańska, A., Węgliński, T., Zakrzewski, K. and Nowosławska, E. (2014). Assessment of hydrocephalus in children based on digital image processing and analysis, International Journal of Applied Mathematics and Computer Science24(2): 299–312, DOI: 10.2478/amcs-2014-0022.10.2478/amcs-2014-0022
  9. Fontijne, D. (2006). Gaigen 2: A geometric algebra implementation generator, Proceedings of the 5th International Conference on Generative Programming and Component Engineering, GPCE 2006, Portland, OR, USA, pp. 141–150.
  10. Franchini, S., Gentile, A., Sorbello, F., Vassallo, G. and Vitabile, S. (2008). An FPGA implementation of a quadruple-based multiplier for 4D Clifford algebra, Proceedings of the 11th IEEE Euromicro Conference on Digital System Design— Architectures, Methods and Tools (DSD 2008), Parma, Italy, pp. 743–751.
  11. Franchini, S., Gentile, A., Sorbello, F., Vassallo, G. and Vitabile, S. (2011). Fixed-size quadruples for a new, hardware-oriented representation of the 4D Clifford algebra, Advances in Applied Clifford Algebras21(2): 315–340.10.1007/s00006-010-0258-0
  12. Franchini, S., Gentile, A., Sorbello, F., Vassallo, G. and Vitabile, S. (2012). Design space exploration of parallel embedded architectures for native Clifford algebra operations, IEEE Design and Test of Computers29(3): 60–69.10.1109/MDT.2012.2206150
  13. Franchini, S., Gentile, A., Sorbello, F., Vassallo, G. and Vitabile, S. (2013). Design and implementation of an embedded coprocessor with native support for 5D, quadruple-based Clifford algebra, IEEE Transactions on Computers62(12): 2366–2381.10.1109/TC.2012.225
  14. Franchini, S., Gentile, A., Sorbello, F., Vassallo, G. and Vitabile, S. (2015). ConformalALU: A conformal geometric algebra coprocessor for medical image processing, IEEE Transactions on Computers64(4): 955–970.10.1109/TC.2014.2315652
  15. Gentile, A., Segreto, S., Sorbello, F., Vassallo, G., Vitabile, S. and Vullo, V. (2005). CliffoSor: A parallel embedded architecture for geometric algebra and computer graphics, Proceedings of the IEEE International Workshop on Computer Architecture for Machine Perception (CAMP 2005), Palermo, Italy, pp. 90–95.
  16. Hestenes, D. (1986). New Foundations for Classical Mechanics, Kluwer Academic, Dordrecht.10.1007/978-94-009-4802-0
  17. Hestenes, D. and Sobczyk, G. (1987). Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics, Kluwer Academic, Dordrecht.10.1007/978-94-009-6292-7_1
  18. Hildenbrand, D. (2018). Introduction to Geometric Algebra Computing, Chapman and Hall/CRC, Boca Raton, FL.
  19. Hitzer, E. and Sangwine, S. (2018). Clifford Multivector Toolbox, A toolbox for computing with Clifford algebras in Matlab, https://sourceforge.net/projects/clifford-multivector-toolbox/.
  20. Hrebień, M., Steć, P., Nieczkowski, T. and Obuchowicz, A. (2008). Segmentation of breast cancer fine needle biopsy cytological images, International Journal of Applied Mathematics and Computer Science18(2): 159–170, DOI: 10.2478/v10006-008-0015-x.10.2478/v10006-008-0015-x
  21. Lasenby, J., Lasenby, A.N., Doran, C.J.L., and Fitzgerald, W.J. (1998). New geometric methods for computer vision: An application to structure and motion estimation, International Journal of Computer Vision26(3): 191–213.10.1023/A:1007901028047
  22. Menneson, J., Saint-Jean, C. and Mascarilla, L. (2011). Color object recognition based on a Clifford Fourier transform, in L. Dorst and J. Lasenby (Eds), Guide to Geometric Algebra in Practice, Springer, Berlin, pp. 175—-191.10.1007/978-0-85729-811-9_9
  23. Mishra, B., Wilson, P. and Wilcock, R. (2015). A geometric algebra coprocessor for color edge detection, Electronics4(1): 94–117.10.3390/electronics4010094
  24. Newman, T.S. and Yi, H. (2006). A survey of the marching cubes algorithm, Computers & Graphics30(5): 854–879.10.1016/j.cag.2006.07.021
  25. Ranjan, V. and Fournier, A. (1995). Union of Spheres (UoS) model for volumetric data, Proceedings of the 11th Annual Symposium on Computational Geometry, Vancouver, BC, Canada, pp. 402–403.
  26. Rivera-Rovelo, J. and Bayro-Corrochano, E. (2006). Medical image segmentation using a self-organizing neural network and Clifford geometric algebra, International Joint Conference on Neural Networks, IJCNN 2006, Vancovver, BC, Canada, pp. 3538–3545.
  27. Rivera-Rovelo, J. and Bayro-Corrochano, E. (2007). Surface approximation using growing self-organizing nets and gradient information, Applied Bionics and Biomechanics4(3): 125–136.10.1155/2007/502679
  28. Sommer, G. (2001). Geometric Computing with Clifford Algebras: Theoretical Foundations and Applications in Computer Vision and Robotics, Springer, Berlin.
  29. Stefanowski, J., Krawiec, K. and Wrembel, R. (2017). Exploring complex and big data, International Journal of Applied Mathematics and Computer Science27(4): 669–679, DOI: 10.1515/amcs-2017-0046.10.1515/amcs-2017-0046
  30. Zhang, Z. (1994). Iterative point matching for registration of free-form curves, International Journal of Computer Vision13(2): 119–152.10.1007/BF01427149
DOI: https://doi.org/10.34768/amcs-2020-0031 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 415 - 433
Submitted on: Oct 14, 2019
Accepted on: May 29, 2020
Published on: Sep 29, 2020
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Silvia Franchini, Antonio Gentile, Giorgio Vassallo, Salvatore Vitabile, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.