Have a personal or library account? Click to login
Classification of High Resolution Satellite Images Using Improved U–Net Cover

Classification of High Resolution Satellite Images Using Improved U–Net

Open Access
|Sep 2020

References

  1. Badrinarayanan, V., Kendall, A. and Cipolla, R. (2017). Segnet: A deep convolutional encoder-decoder architecture for image segmentation, IEEE Transactions on Geoscience & Remote Sensing39(12): 2481–2495.10.1109/TPAMI.2016.264461528060704
  2. Bei, Z., Bo, H. and Zhong, Y. (2017). Transfer learning with fully pretrained deep convolution networks for land-use classification, IEEE Geoscience & Remote Sensing LettersPP(99): 1–5.
  3. Caesar, H., Uijlings, J. and Ferrari, V. (2018). Coco-stuff: Thing and stuff classes in context, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, pp. 1209–1218.
  4. Carreira, J., Rui, C., Batista, J. and Sminchisescu, C. (2012). Semantic segmentation with second-order pooling, European Conference on Computer Vision, Firenze, Italy, pp. 430–443.
  5. Carreira, J. and Sminchisescu, C. (2011). CPMC: Automatic object segmentation using constrained parametric min-cuts, IEEE Transactions on Pattern Analysis and Machine Intelligence34(7): 1312–1328.10.1109/TPAMI.2011.23122144523
  6. Castelluccio, M., Poggi, G., Sansone, C. and Verdoliva, L. (2015). Land use classification in remote sensing images by convolutional neural networks, Acta Ecologica Sinica28(2): 627–635.
  7. Chandra, S. and Kokkinos, I. (2016). Fast, exact and multi-scale inference for semantic image segmentation with deep Gaussian CRFS, European Conference on Computer Vision, Amsterdam, The Netherlands, pp. 402–418.
  8. Chandra, S., Usunier, N. and Kokkinos, I. (2017). Dense and low-rank Gaussian CRFs using deep embeddings, IEEE International Conference on Computer Vision, Honolulu, HI, USA, pp. 5103–5112.
  9. Chao, P., Zhang, X., Gang, Y., Luo, G. and Jian, S. (2017). Large kernel matters—Improve semantic segmentation by global convolutional network, IEEE Conference on Computer Vision and Pattern Recognition, Venice, Italy, pp. 4353–4361.
  10. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille, A.L. (2017a). DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs, IEEE Transactions on Pattern Analysis & Machine Intelligence40(4): 834–848.10.1109/TPAMI.2017.269918428463186
  11. Chen, L.-C., Papandreou, G., Schroff, F. and Adam, H. (2017b). Rethinking atrous convolution for semantic image segmentation, arXiv 1706.05587.
  12. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F. and Adam, H. (2018). Encoder-decoder with atrous separable convolution for semantic image segmentation, Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, pp. 801–818.
  13. Cleve, C., Kelly, M., Kearns, F.R. and Moritz, M. (2008). Classification of the wildland–urban interface: A comparison of pixel- and object-based classifications using high-resolution aerial photography, Computers Environment & Urban Systems32(4): 317–326.10.1016/j.compenvurbsys.2007.10.001
  14. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S. and Schiele, B. (2016). The cityscapes dataset for semantic urban scene understanding, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, pp. 3213–3223.
  15. Fu, J., Jing, L., Wang, Y. and Lu, H. (2019). Stacked deconvolutional network for semantic segmentation, IEEE Transactions on Image ProcessingPP(99): 1–1.10.1109/TIP.2019.289546030703024
  16. Fulkerson, B., Vedaldi, A. and Soatto, S. (2009). Class segmentation and object localization with superpixel neighborhoods, IEEE International Conference on Computer Vision, Kyoto, Japan, pp. 670–677.
  17. Gang, C., Weng, Q., Hay, G.J. and He, Y. (2018). Geographic object-based image analysis (geobia): Emerging trends and future opportunities, GIScience & Remote Sensing55(2): 159–182.10.1080/15481603.2018.1426092
  18. Gibbons, J. and Chakraborti, S. (2011). The Wilcoxon rank-sum test and confidence interval, Nonparametric Statistical Inference59(4): 290–293.
  19. Gong, C., Han, J., Lei, G., Liu, Z., Bu, S. and Ren, J. (2015). Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images, IEEE Transactions on Geoscience & Remote Sensing53(8): 4238–4249.10.1109/TGRS.2015.2393857
  20. Grauman, K. and Darrell, T. (2005). Pyramid match kernels: Discriminative classification with sets of image features, 10th IEEE International Conference on Computer Vision, Beijing, China, pp. 1458–1465.
  21. He, K., Zhang, X., Ren, S. and Sun, J. (2015). Spatial pyramid pooling in deep convolutional networks for visual recognition, IEEE Transactions on Pattern Analysis & Machine Intelligence37(9): 1904–16.10.1109/TPAMI.2015.238982426353135
  22. Kim, J.H., Lee, H., Hong, S.J., Kim, S., Park, J., Hwang, J.Y. and Choi, J.P. (2018). Objects segmentation from high-resolution aerial images using U-Net with pyramid pooling layers, IEEE Geoscience and Remote Sensing Letters16(1): 115-119.10.1109/LGRS.2018.2868880
  23. Lazebnik, S., Schmid, C. and Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, NY, USA, pp. 2169–2178.
  24. Lin, G., Milan, A., Shen, C. and Reid, I. (2017). Refinenet: Multi-path refinement networks with identity mappings for high-resolution semantic segmentation, IEEE International Conference on Computer Vision, Venice, Italy, pp. 1925–1934.
  25. Liu, W., Rabinovich, A. and Berg, A. (2015). Parsenet: Looking wider to see better, arXiv 1506.04579.
  26. Long, J., Shelhamer, E. and Darrell, T. (2015). Fully convolutional networks for semantic segmentation, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, pp. 3431–3440.
  27. Maggiori, E., Tarabalka, Y., Charpiat, G. and Alliez, P. (2016). Convolutional neural networks for large-scale remote sensing image classification, IEEE Transactions on Geoscience & Remote Sensing55(2): 645–657.10.1109/TGRS.2016.2612821
  28. Marcos, D., Volpi, M., Kellenberger, B. and Tuia, D. (2018). Land cover mapping at very high resolution with rotation equivariant CNNs: Towards small yet accurate models, ISPRS Journal of Photogrammetry and Remote Sensing145(5): 96–107.10.1016/j.isprsjprs.2018.01.021
  29. Marmanis, D., Schindler, K., Wegner, J., Galliani, S., Datcu, M. and Stilla, U. (2016). Classification with an edge: Improving semantic image segmentation with boundary detection, ISPRS Journal of Photogrammetry and Remote Sensing135(7): 158–172.10.1016/j.isprsjprs.2017.11.009
  30. Mi, Z. and Hu, X. (2017). Learning dual multi-scale manifold ranking for semantic segmentation of high-resolution images, Remote Sensing9(5): 500.10.3390/rs9050500
  31. Miao, L., Zang, S., Bing, Z., Li, S. and Wu, C. (2014). A review of remote sensing image classification techniques: The role of spatio-contextual information, European Journal of Remote Sensing47(1): 389–411.10.5721/EuJRS20144723
  32. Noh, H., Hong, S. and Han, B. (2015). Learning deconvolution network for semantic segmentation, IEEE International Conference on Computer Vision, Santiago, Chile, pp. 1520–1528.
  33. Peng, D., Zhang, Y. and Guan, H. (2019). End-to-end change detection for high resolution satellite images using improved UNet++, Remote Sensing11(11): 1382.10.3390/rs11111382
  34. Pohlen, T., Hermans, A., Mathias, M. and Leibe, B. (2017). Full-resolution residual networks for semantic segmentation in street scenes, IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, pp. 4151–4160.
  35. Razavian, A.S., Azizpour, H., Sullivan, J. and Carlsson, S. (2014). CNN features off-the-shelf: An astounding baseline for recognition, IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, pp. 806–813.
  36. Ren, S., Girshick, R., Girshick, R. and Sun, J. (2017). Faster r-CNN: Towards real-time object detection with region proposal networks, IEEE Transactions on Pattern Analysis & Machine Intelligence39(6): 1137–1149.10.1109/TPAMI.2016.257703127295650
  37. Ronneberger, O., Fischer, P. and Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation, International Conference on Medical Image Computing & Computer-Assisted Intervention, Munich, Germany, pp. 234–241.
  38. Scott, G.J., England, M.R., Starms, W.A., Marcum, R.A. and Davis, C.H. (2017). Training deep convolutional neural networks for land-cover classification of high-resolution imagery, IEEE Geoscience & Remote Sensing Letters14(9): 1638–1642.10.1109/LGRS.2017.2722988
  39. Sharma, A., Liu, X., Yang, X. and Shi, D. (2017). A patch-based convolutional neural network for remote sensing image classification, Neural Networks95(7): 19.10.1016/j.neunet.2017.07.01728843092
  40. Shotton, J., Johnson, M. and Cipolla, R. (2008). Semantic texton forests for image categorization and segmentation, Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, pp. 1–8.
  41. Shotton, J., Winn, J., Rother, C. and Criminisi, A. (2009). Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context, International Journal of Computer Vision81(1): 2–23.10.1007/s11263-007-0109-1
  42. Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition, arXiv 1409.1556.
  43. Sivic and Zisserman (2003). Video Google: A text retrieval approach to object matching in videos, Proceedings of the 9th IEEE International Conference on Computer Vision, Nice, France, Vol.2, pp. 1470–1477.
  44. Tao, L., Abd-Elrahman, A., Morton, J. and Wilhelm, V.L. (2018). Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system, GIScience & Remote Sensing55(2): 243–264.10.1080/15481603.2018.1426091
  45. Vemulapalli, R., Tuzel, O., Liu, M.Y. and Chellappa, R. (2016). Gaussian conditional random field network for semantic segmentation, Computer Vision & Pattern Recognition, Las Vegas, NV, USA, pp. 3224–3233.
  46. Volpi, M. and Tuia, D. (2017). Dense semantic labeling of subdecimeter resolution images with convolutional neural networks, IEEE Transactions on Geoscience and Remote Sensing55(2): 881–893.10.1109/TGRS.2016.2616585
  47. Yang, H., Yu, B., Luo, J. and Chen, F. (2019). Semantic segmentation of high spatial resolution images with deep neural networks, GIScience & Remote Sensing56(5): 1–20.10.1080/15481603.2018.1564499
  48. Zhang, C., Xin, P., Li, H., Gardiner, A. and Atkinson, P.M. (2018a). A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification, ISPRS Journal of Photogrammetry & Remote Sensing140(7): 133–144.10.1016/j.isprsjprs.2017.07.014
  49. Zhang, P., Ke, Y., Zhang, Z., Wang, M., Li, P. and Zhang, S. (2018b). Urban land use and land cover classification using novel deep learning models based on high spatial resolution satellite imagery, IEEE Transactions on Geo-science & Remote Sensing18(11): 3717.10.3390/s18113717626352830388781
  50. Zhao, H., Shi, J., Qi, X., Wang, X. and Jia, J. (2017). Pyramid scene parsing network, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp. 6230–6239.
  51. Zhao, W. and Du, S. (2016). Learning multiscale and deep representations for classifying remotely sensed imagery, ISPRS Journal of Photogrammetry & Remote Sensing113(3): 155–165.10.1016/j.isprsjprs.2016.01.004
  52. Zhou, B., Hang, Z., Puig, X., Fidler, S., Barriuso, A. and Torralba, A. (2017). Scene parsing through ADE20K dataset, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, pp. 633–641.
  53. Zhuowen, T. and Xiang, B. (2010). Auto-context and its application to high-level vision tasks and 3D brain image segmentation, IEEE Transactions on Pattern Analysis & Machine Intelligence32(10): 1744–1757.10.1109/TPAMI.2009.18620724753
DOI: https://doi.org/10.34768/amcs-2020-0030 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 399 - 413
Submitted on: Oct 11, 2019
Accepted on: May 29, 2020
Published on: Sep 29, 2020
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Yong Wang, Dongfang Zhang, Guangming Dai, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.