Have a personal or library account? Click to login
Deformed solitons of a typical set of (2+1)–dimensional complex modified Korteweg–de Vries equations Cover

Deformed solitons of a typical set of (2+1)–dimensional complex modified Korteweg–de Vries equations

By: Feng Yuan,  Xiaoming Zhu and  Yulei Wang  
Open Access
|Jul 2020

References

  1. Ablowitz, M.J., Ablowitz, M.A., Clarkson, P.A. and Clarkson, P.A. (1991). Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge.10.1017/CBO9780511623998
  2. Biondini, G. (2007). Line soliton interactions of the Kadomtsev–Petviashvili equation, Physical Review Letters99(6): 064103.10.1103/PhysRevLett.99.064103
  3. Dai, C.Q., Zhu, S.Q., Wang, L.L. and Zhang, J.F. (2010). Exact spatial similaritons for the generalized (2+1)-dimensional nonlinear Schrödinger equation with distributed coefficients, EPL (Europhysics Letters)92(2): 24005.10.1209/0295-5075/92/24005
  4. El-Tantawy, S.A. and Moslem, W.M. (2014). Nonlinear structures of the Korteweg–de Vries and modified Korteweg–de Vries equations in non-Maxwellian electron-positron-ion plasma: Solitons collision and rogue waves, Physics of Plasmas21(5): 052112.10.1063/1.4879815
  5. Erbay, H.A. (1998). Nonlinear transverse waves in a generalized elastic solid and the complex modified Korteweg–de Vries equation, Physica Scripta58(1): 9.10.1088/0031-8949/58/1/001
  6. Erbay, S. and Şuhubi, E.S. (1989). Nonlinear wave propagation in micropolar media. II: Special cases, solitary waves and Painlevé analysis, International Journal of Engineering Science27(8): 915–919.
  7. Gorbacheva, O.B. and Ostrovsky, L.A. (1983). Nonlinear vector waves in a mechanical model of a molecular chain, Physica D: Nonlinear Phenomena8(1–2): 223–228.10.1016/0167-2789(83)90319-6
  8. He, J.S., Tao, Y.S., Porsezian, K. and Fokas, A.S. (2013). Rogue wave management in an inhomogeneous nonlinear fibre with higher order effects, Journal of Nonlinear Mathematical Physics20(3): 407–419.10.1080/14029251.2013.855045
  9. He, J.S., Wang, L.H., Li, L.J., Porsezian, K. and Erdélyi, R. (2014). Few-cycle optical rogue waves: Complex modified Korteweg–de Vries equation, Physical Review E89(6): 062917.10.1103/PhysRevE.89.06291725019861
  10. Hirota, R. (1972). Exact solution of the modified Korteweg–de Vries equation for multiple collisions of solitons, Journal of the Physical Society of Japan33(5): 1456–1458.10.1143/JPSJ.33.1456
  11. Kao, C.Y. and Kodama, Y. (2012). Numerical study of the KP equation for non-periodic waves, Mathematics and Computers in Simulation82(7): 1185–1218.10.1016/j.matcom.2010.05.025
  12. Karney, C.F.F., Sen, A. and Chu, F.Y.F. (1979). Nonlinear evolution of lower hybrid waves, The Physics of Fluids22(5): 940–952.10.1063/1.862688
  13. Khater, A.H., El-Kalaawy, O.H. and Callebaut, D.K. (1998). Bäcklund transformations and exact solutions for Alfvén solitons in a relativistic electron–positron plasma, Physica Scripta58(6): 545.10.1088/0031-8949/58/6/001
  14. Kodama, Y., Oikawa, M. and Tsuji, H. (2009). Soliton solutions of the KP equation with V-shape initial waves, Journal of Physics A: Mathematical and Theoretical42(31): 312001.10.1088/1751-8113/42/31/312001
  15. Komatsu, T.S. and Sasa, S.-i. (1995). Kink soliton characterizing traffic congestion, Physical Review E52(5): 5574.10.1103/PhysRevE.52.55749964055
  16. Korteweg, D.J. and de Vries, G. (1895). XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science39(240): 422.
  17. Kundu, A. (2008). Exact accelerating solitons in nonholonomic deformation of the KdV equation with a two-fold integrable hierarchy, Journal of Physics A: Mathematical and Theoretical41(49): 495201.10.1088/1751-8113/41/49/495201
  18. Li, Z.J., Hai, W.H. and Deng, Y. (2013). Nonautonomous deformed solitons in a Bose–Einstein condensate, Chinese Physics B22(9): 090505.10.1088/1674-1056/22/9/090505
  19. Liu, X.T., Yong, X.L., Huang, Y.H., Yu, R. and Gao, J.W. (2015). Deformed soliton, breather and rogue wave solutions of an inhomogeneous nonlinear Hirota equation, Communications in Nonlinear Science and Numerical Simulation29(1–3): 257–266.10.1016/j.cnsns.2015.05.016
  20. Lonngren, K. E. (1998). Ion acoustic soliton experiments in a plasma, Optical and Quantum Electronics30(7–10): 615–630.10.1023/A:1006910004292
  21. Lü, X., Zhu, H. W. Meng, X.H.Y.Z.C. and Tian, B. (2007). Soliton solutions and a Bäcklund transformation for a generalized nonlinear Schrödinger equation with variable coefficients from optical fiber communications, Journal of Mathematical Analysis and Applications336(2): 1305–1315.10.1016/j.jmaa.2007.03.017
  22. Mollenauer, L.F., Stolen, R.H. and Gordon, J.P. (1980). Experimental observation of picosecond pulse narrowing and solitons in optical fibers, Physical Review Letters45(13): 1095.10.1103/PhysRevLett.45.1095
  23. Myrzakulov, R., Mamyrbekova, G., Nugmanova, G. and Lakshmanan, M. (2015). Integrable (2+1)-dimensional spin models with self-consistent potentials, Symmetry7(3): 1352–1375.10.3390/sym7031352
  24. Osman, M.S. and Wazwaz, A.M. (2018). An efficient algorithm to construct multi-soliton rational solutions of the (2+1)-dimensional KdV equation with variable coefficients, Applied Mathematics and Computation321: 282–289.10.1016/j.amc.2017.10.042
  25. Pal, R., Kaur, H., Raju, T.S. and Kumar, C. (2017). Periodic and rational solutions of variable-coefficient modified Korteweg–de Vries equation, Nonlinear Dynamics89(1): 617–622.10.1007/s11071-017-3475-4
  26. Porsezian, K., Seenuvasakumaran, P. and Ganapathy, R. (2006). Optical solitons in some deformed MB and NLS–MB equations, Physics Letters A348(3–6): 233–243.10.1016/j.physleta.2005.08.065
  27. Russell, S.J. (1844). Report on waves, 14th Meeting of the British Association for the Advancement of Science, York, UK, pp. 311–390.
  28. Sun, Z.Y. Gao, Y.T.L.Y. and Yu, X. (2011). Soliton management for a variable-coefficient modified Korteweg–de Vries equation, Physical Review E84(2): 026606.10.1103/PhysRevE.84.02660621929127
  29. Tao, Y.S., He, J.S. and Porsezian, K. (2013). Deformed soliton, breather, and rogue wave solutions of an inhomogeneous nonlinear Schrödinger equation, Chinese Physics B22(7): 074210.10.1088/1674-1056/22/7/074210
  30. Wadati, M. (1972). The exact solution of the modified Korteweg–de Vries equation, Journal of the Physical Society of Japan32(6): 1681–1681.10.1143/JPSJ.32.1681
  31. Wadati, M. (2008). Construction of parity-time symmetric potential through the soliton theory, Journal of the Physical Society of Japan77(7): 074005.10.1143/JPSJ.77.074005
  32. Wadati, M. and Ohkuma, K. (1982). Multiple-pole solutions of the modified Korteweg–de Vries equation, Journal of the Physical Society of Japan51(6): 2029–2035.10.1143/JPSJ.51.2029
  33. Wu, H.X., Zeng, Y.B. and Fan, T.Y. (2008). Complexitons of the modified KdV equation by Darboux transformation, Applied Mathematics and Computation196(2): 501–510.10.1016/j.amc.2007.06.011
  34. Xing, Q.X., Wang, L.H., Mihalache, D., Porsezian, K. and He, J.S. (2017a). Construction of rational solutions of the real modified Korteweg–de Vries equation from its periodic solutions, Chaos: An Interdisciplinary Journal of Nonlinear Science27(5): 053102.10.1063/1.498272128576109
  35. Xing, Q.X., Wu, Z.W., Mihalache, D. and He, J.S. (2017b). Smooth positon solutions of the focusing modified Korteweg–de Vries equation, Nonlinear Dynamics89(4): 2299–2310.10.1007/s11071-017-3579-x
  36. Xu, T.X., Qiao, Z.J. and Li, Y. (2011). Darboux transformation and shock solitons for complex mKdV equation, Pacific Journal of Applied Mathematics3(1/2): 137.
  37. Yan, J.L. and Zheng, L.H. (2017). Conservative finite volume element schemes for the complex modified Korteweg–de Vries equation, International Journal of Applied Mathematics and Computer Science27(3): 515–525. DOI:10.1515/amcs-2017-0036.10.1515/amcs-2017-0036
  38. Yesmakhanova, K., Shaikhova, G., Bekova, G. and Myrzakulov, R. (2017). Darboux transformation and soliton solution for the (2+1)-dimensional complex modified Korteweg–de Vries equations, Journal of Physics: Conference Series936: 012045.10.1088/1742-6596/936/1/012045
  39. Zabusky, N.J. and Kruskal, M.D. (1965). Interaction of solitons in a collisionless plasma and the recurrence of initial states, Physical Review Letters15(6): 240.10.1103/PhysRevLett.15.240
  40. Zha, Q.L. and Li, Z.B. (2008). Darboux transformation and multi-solitons for complex mKdV equation, Chinese Physics Letters25(1): 8.10.1088/0256-307X/25/1/003
  41. Zhang, H.Q. Tian, B.L.L.L. and Xue, Y.S. (2009). Darboux transformation and soliton solutions for the (2+1)-dimensional nonlinear Schrödinger hierarchy with symbolic computation, Physica A: Statistical Mechanics and Its Applications388(1): 9–20.10.1016/j.physa.2008.09.032
  42. Zhang, Y.S., Guo, L.J., Chabchoub, A. and He, J.S. (2017). Higher-order rogue wave dynamics for a derivative nonlinear Schrödinger equation, Romanian Journal of Physics62: 102.
  43. Zhang, Y.S., Guo, L.J., He, J.S. and Zhou, Z.X. (2015). Darboux transformation of the second-type derivative nonlinear Schrödinger equation, Letters in Mathematical Physics105(6): 853–891.10.1007/s11005-015-0758-x
DOI: https://doi.org/10.34768/amcs-2020-0026 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 337 - 350
Submitted on: Nov 15, 2019
Accepted on: Jan 30, 2020
Published on: Jul 4, 2020
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Feng Yuan, Xiaoming Zhu, Yulei Wang, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.