Biondini, G. (2007). Line soliton interactions of the Kadomtsev–Petviashvili equation, Physical Review Letters99(6): 064103.10.1103/PhysRevLett.99.064103
El-Tantawy, S.A. and Moslem, W.M. (2014). Nonlinear structures of the Korteweg–de Vries and modified Korteweg–de Vries equations in non-Maxwellian electron-positron-ion plasma: Solitons collision and rogue waves, Physics of Plasmas21(5): 052112.10.1063/1.4879815
Erbay, S. and Şuhubi, E.S. (1989). Nonlinear wave propagation in micropolar media. II: Special cases, solitary waves and Painlevé analysis, International Journal of Engineering Science27(8): 915–919.
Gorbacheva, O.B. and Ostrovsky, L.A. (1983). Nonlinear vector waves in a mechanical model of a molecular chain, Physica D: Nonlinear Phenomena8(1–2): 223–228.10.1016/0167-2789(83)90319-6
He, J.S., Tao, Y.S., Porsezian, K. and Fokas, A.S. (2013). Rogue wave management in an inhomogeneous nonlinear fibre with higher order effects, Journal of Nonlinear Mathematical Physics20(3): 407–419.10.1080/14029251.2013.855045
Hirota, R. (1972). Exact solution of the modified Korteweg–de Vries equation for multiple collisions of solitons, Journal of the Physical Society of Japan33(5): 1456–1458.10.1143/JPSJ.33.1456
Kao, C.Y. and Kodama, Y. (2012). Numerical study of the KP equation for non-periodic waves, Mathematics and Computers in Simulation82(7): 1185–1218.10.1016/j.matcom.2010.05.025
Khater, A.H., El-Kalaawy, O.H. and Callebaut, D.K. (1998). Bäcklund transformations and exact solutions for Alfvén solitons in a relativistic electron–positron plasma, Physica Scripta58(6): 545.10.1088/0031-8949/58/6/001
Kodama, Y., Oikawa, M. and Tsuji, H. (2009). Soliton solutions of the KP equation with V-shape initial waves, Journal of Physics A: Mathematical and Theoretical42(31): 312001.10.1088/1751-8113/42/31/312001
Korteweg, D.J. and de Vries, G. (1895). XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science39(240): 422.
Kundu, A. (2008). Exact accelerating solitons in nonholonomic deformation of the KdV equation with a two-fold integrable hierarchy, Journal of Physics A: Mathematical and Theoretical41(49): 495201.10.1088/1751-8113/41/49/495201
Li, Z.J., Hai, W.H. and Deng, Y. (2013). Nonautonomous deformed solitons in a Bose–Einstein condensate, Chinese Physics B22(9): 090505.10.1088/1674-1056/22/9/090505
Liu, X.T., Yong, X.L., Huang, Y.H., Yu, R. and Gao, J.W. (2015). Deformed soliton, breather and rogue wave solutions of an inhomogeneous nonlinear Hirota equation, Communications in Nonlinear Science and Numerical Simulation29(1–3): 257–266.10.1016/j.cnsns.2015.05.016
Lü, X., Zhu, H. W. Meng, X.H.Y.Z.C. and Tian, B. (2007). Soliton solutions and a Bäcklund transformation for a generalized nonlinear Schrödinger equation with variable coefficients from optical fiber communications, Journal of Mathematical Analysis and Applications336(2): 1305–1315.10.1016/j.jmaa.2007.03.017
Myrzakulov, R., Mamyrbekova, G., Nugmanova, G. and Lakshmanan, M. (2015). Integrable (2+1)-dimensional spin models with self-consistent potentials, Symmetry7(3): 1352–1375.10.3390/sym7031352
Osman, M.S. and Wazwaz, A.M. (2018). An efficient algorithm to construct multi-soliton rational solutions of the (2+1)-dimensional KdV equation with variable coefficients, Applied Mathematics and Computation321: 282–289.10.1016/j.amc.2017.10.042
Pal, R., Kaur, H., Raju, T.S. and Kumar, C. (2017). Periodic and rational solutions of variable-coefficient modified Korteweg–de Vries equation, Nonlinear Dynamics89(1): 617–622.10.1007/s11071-017-3475-4
Porsezian, K., Seenuvasakumaran, P. and Ganapathy, R. (2006). Optical solitons in some deformed MB and NLS–MB equations, Physics Letters A348(3–6): 233–243.10.1016/j.physleta.2005.08.065
Tao, Y.S., He, J.S. and Porsezian, K. (2013). Deformed soliton, breather, and rogue wave solutions of an inhomogeneous nonlinear Schrödinger equation, Chinese Physics B22(7): 074210.10.1088/1674-1056/22/7/074210
Wadati, M. (1972). The exact solution of the modified Korteweg–de Vries equation, Journal of the Physical Society of Japan32(6): 1681–1681.10.1143/JPSJ.32.1681
Wadati, M. (2008). Construction of parity-time symmetric potential through the soliton theory, Journal of the Physical Society of Japan77(7): 074005.10.1143/JPSJ.77.074005
Wadati, M. and Ohkuma, K. (1982). Multiple-pole solutions of the modified Korteweg–de Vries equation, Journal of the Physical Society of Japan51(6): 2029–2035.10.1143/JPSJ.51.2029
Wu, H.X., Zeng, Y.B. and Fan, T.Y. (2008). Complexitons of the modified KdV equation by Darboux transformation, Applied Mathematics and Computation196(2): 501–510.10.1016/j.amc.2007.06.011
Xing, Q.X., Wang, L.H., Mihalache, D., Porsezian, K. and He, J.S. (2017a). Construction of rational solutions of the real modified Korteweg–de Vries equation from its periodic solutions, Chaos: An Interdisciplinary Journal of Nonlinear Science27(5): 053102.10.1063/1.498272128576109
Xu, T.X., Qiao, Z.J. and Li, Y. (2011). Darboux transformation and shock solitons for complex mKdV equation, Pacific Journal of Applied Mathematics3(1/2): 137.
Yan, J.L. and Zheng, L.H. (2017). Conservative finite volume element schemes for the complex modified Korteweg–de Vries equation, International Journal of Applied Mathematics and Computer Science27(3): 515–525. DOI:10.1515/amcs-2017-0036.10.1515/amcs-2017-0036
Yesmakhanova, K., Shaikhova, G., Bekova, G. and Myrzakulov, R. (2017). Darboux transformation and soliton solution for the (2+1)-dimensional complex modified Korteweg–de Vries equations, Journal of Physics: Conference Series936: 012045.10.1088/1742-6596/936/1/012045
Zabusky, N.J. and Kruskal, M.D. (1965). Interaction of solitons in a collisionless plasma and the recurrence of initial states, Physical Review Letters15(6): 240.10.1103/PhysRevLett.15.240
Zha, Q.L. and Li, Z.B. (2008). Darboux transformation and multi-solitons for complex mKdV equation, Chinese Physics Letters25(1): 8.10.1088/0256-307X/25/1/003
Zhang, H.Q. Tian, B.L.L.L. and Xue, Y.S. (2009). Darboux transformation and soliton solutions for the (2+1)-dimensional nonlinear Schrödinger hierarchy with symbolic computation, Physica A: Statistical Mechanics and Its Applications388(1): 9–20.10.1016/j.physa.2008.09.032
Zhang, Y.S., Guo, L.J., Chabchoub, A. and He, J.S. (2017). Higher-order rogue wave dynamics for a derivative nonlinear Schrödinger equation, Romanian Journal of Physics62: 102.