Have a personal or library account? Click to login
Bounded–abstaining classification for breast tumors in imbalanced ultrasound images Cover

Bounded–abstaining classification for breast tumors in imbalanced ultrasound images

Open Access
|Jul 2020

References

  1. Abdel-Nasser, M., Melendez, J., Moreno, A., Omer, O.A. and Puig, D. (2017). Breast tumor classification in ultrasound images using texture analysis and super-resolution methods, Engineering Applications of Artificial Intelligence59: 84–92.10.1016/j.engappai.2016.12.019
  2. Acharya, U.R., Ng, W.L., Rahmat, K., Sudarshan, V.K., Koh, J.E., Tan, J.H., Hagiwara, Y., Yeong, C.H. and Ng, K.H. (2017). Data mining framework for breast lesion classification in shear wave ultrasound: A hybrid feature paradigm, Biomedical Signal Processing and Control33: 400–410.10.1016/j.bspc.2016.11.004
  3. Cai, L.,Wang, X.,Wang, Y., Guo, Y., Yu, J. andWang, Y. (2015). Robust phase-based texture descriptor for classification of breast ultrasound images, Biomedical Engineering Online14(1): 26.10.1186/s12938-015-0022-8437650025889570
  4. Chang, J.M., Moon, W.K., Cho, N., Yi, A., Koo, H.R., Han, W., Noh, D.-Y., Moon, H.-G. and Kim, S.J. (2011). Clinical application of shear wave elastography (SWE) in the diagnosis of benign and malignant breast diseases, Breast Cancer Research and Treatment129(1): 89–97.10.1007/s10549-011-1627-721681447
  5. Chen, S.-C., Cheung, Y.-C., Su, C.-H., Chen, M.-F., Hwang, T.-L. and Hsueh, S. (2004). Analysis of sonographic features for the differentiation of benign and malignant breast tumors of different sizes, Ultrasound in Obstetrics and Gynecology23(2): 188–193.10.1002/uog.93014770402
  6. Cheng, H.-D., Shan, J., Ju, W., Guo, Y. and Zhang, L. (2010). Automated breast cancer detection and classification using ultrasound images: A survey, Pattern Recognition43(1): 299–317.10.1016/j.patcog.2009.05.012
  7. Daoud, M.I., Bdair, T.M., Al-Najar, M. and Alazrai, R. (2016). A fusion-based approach for breast ultrasound image classification using multiple-ROI texture and morphological analyses, Computational and Mathematical Methods in Medicine2016: 6740956.10.1155/2016/6740956522730728127383
  8. Fawcett, T. (2004). ROC graphs: Notes and practical considerations for researchers, Machine Learning31(1): 1–38.
  9. Fawcett, T. (2006). An introduction to ROC analysis, Pattern Recognition Letters27(8): 861–874.10.1016/j.patrec.2005.10.010
  10. Fischer, L., Hammer, B. and Wersing, H. (2015). Efficient rejection strategies for prototype-based classification, Neurocomputing169: 334–342.10.1016/j.neucom.2014.10.092
  11. Fu, J., Li, Y., Li, N. and Li, Z. (2018). Comprehensive analysis of clinical utility of three-dimensional ultrasound for benign and malignant breast masses, Cancer Management and Research10: 3295–3303.10.2147/CMAR.S176494613223030233245
  12. Gai, S., Zhang, B., Yang, C. and Yu, L. (2018). Speckle noise reduction in medical ultrasound image using monogenic wavelet and Laplace mixture distribution, Digital Signal Processing72: 192–207.10.1016/j.dsp.2017.10.006
  13. Garcia-Closas, M. et al. (2008). Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics, PLoS Genetics4(4): e1000054.
  14. Guan, H., Zhang, Y., Cheng, H., Xian, M. and Tang, X. (2019). Ba2cs: Bounded abstaining with two constraints of reject rates in binary classification, Neurocomputing357: 125–134.10.1016/j.neucom.2019.04.047
  15. Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection, Journal of Machine Learning Research3(Mar): 1157–1182.
  16. Haralick, R.M., Shanmugam, K. and Dinstein, I. (1973). Textural features for image classification, IEEE Transactions on Systems, Man, and CyberneticsSMC- 3(6): 610–621.10.1109/TSMC.1973.4309314
  17. Hofmann, T. (1999). Probabilistic latent semantic analysis, Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, Stockholm, Sweden, pp. 289–296.
  18. Hong, X., Chen, S. and Harris, C.J. (2007). A kernel-based two-class classifier for imbalanced data sets, IEEE Transactions on Neural Networks18(1): 28–41.10.1109/TNN.2006.882812
  19. Kang, S., Cho, S., Rhee, S.-j. and Yu, K.-S. (2017). Reliable prediction of anti-diabetic drug failure using a reject option, Pattern Analysis and Applications20(3): 883–891.10.1007/s10044-016-0585-4
  20. Lee, J., Nishikawa, R.M., Reiser, I. and Boone, J.M. (2018). Relationship between computer segmentation performance and computer classification performance in breast CT: A simulation study using RGI segmentation and LDA classification, Medical Physics45(8): 3650–3656.10.1002/mp.13054
  21. Li, L., Zhou, X., Zhao, X., Hao, S., Yao, J., Zhong, W. and Zhi, H. (2017). B-mode ultrasound combined with color Doppler and strain elastography in the diagnosis of non-mass breast lesions: A prospective study, Ultrasound in medicine & biology43(11): 2582–2590.10.1016/j.ultrasmedbio.2017.07.014
  22. Liberman, L. and Menell, J.H. (2002). Breast imaging reporting and data system (BI-RADS), Radiologic Clinics of North America40(3): 409–430.10.1016/S0033-8389(01)00017-3
  23. Lin, C.-M., Hou, Y.-L., Chen, T.-Y. and Chen, K.-H. (2014). Breast nodules computer-aided diagnostic system design using fuzzy cerebellar model neural networks, IEEE Transactions on Fuzzy Systems22(3): 693–699.10.1109/TFUZZ.2013.2269149
  24. Liu, Y., Cheng, H., Huang, J., Zhang, Y., Tang, X., Tian, J.-W. andWang, Y. (2012). Computer aided diagnosis system for breast cancer based on color Doppler flow imaging, Journal of Medical Systems36(6): 3975–3982.10.1007/s10916-012-9869-422791011
  25. López, V., Fernández, A., García, S., Palade, V. and Herrera, F. (2013). An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics, Information Sciences250: 113–141.10.1016/j.ins.2013.07.007
  26. Monticciolo, D.L., Newell, M.S., Hendrick, R.E., Helvie, M.A., Moy, L.,Monsees, B., Kopans, D.B., Eby, P.R. and Sickles, E.A. (2017). Breast cancer screening for average-risk women: Recommendations from the ACR commission on breast imaging, Journal of the American College of Radiology14(9): 1137–1143.10.1016/j.jacr.2017.06.00128648873
  27. Moon, W.K., Chen, I.-L., Yi, A., Bae, M.S., Shin, S.U. and Chang, R.-F. (2018). Computer-aided prediction model for axillary lymph node metastasis in breast cancer using tumor morphological and textural features on ultrasound, Computer Methods and Programs in Biomedicine162: 129–137.10.1016/j.cmpb.2018.05.01129903479
  28. Mousania, Y. and Karimi, S. (2019). Contrast improvement of ultrasound images of focal liver lesions using a new histogram equalization, in K.S. Montaser (Ed.), Fundamental Research in Electrical Engineering, Springer, Singapore, pp. 43–53.10.1007/978-981-10-8672-4_4
  29. Pietraszek, T. (2007). On the use of ROC analysis for the optimization of abstaining classifiers, Machine Learning68(2): 137–169.10.1007/s10994-007-5013-y
  30. Prati, R.C., Batista, G. and Monard, M.C. (2011). A survey on graphical methods for classification predictive performance evaluation, IEEE Transactions on Knowledge and Data Engineering23(11): 1601–1618.10.1109/TKDE.2011.59
  31. Rahmawaty, M., Nugroho, H. A., Triyani, Y., Ardiyanto, I. and Soesanti, I. (2016). Classification of breast ultrasound images based on texture analysis, International Conference on Biomedical Engineering (IBIOMED), Yogyakarta, Indonesia, pp. 1–6.
  32. Rawashdeh, M., Lewis, S., Zaitoun, M. and Brennan, P. (2018). Breast lesion shape and margin evaluation: BI-RADS based metrics understate radiologists’ actual levels of agreement, Computers in Biology and Medicine96: 294–298.10.1016/j.compbiomed.2018.04.00529673997
  33. Rodriguez-Cristerna, A., Gomez-Flores, W. and de Albuquerque Pereira, W.C. (2018). A computer-aided diagnosis system for breast ultrasound based on weighted bi-rads classes, Computer Methods and Programs in Biomedicine153: 33–40.10.1016/j.cmpb.2017.10.00429157459
  34. Roffo, G., Melzi, S., Castellani, U. and Vinciarelli, A. (2017). Infinite latent feature selection: A probabilistic latent graph-based ranking approach, Proceedings of the IEEE International Conference on Computer Vision (ICCV 2017), Venice, Italy, pp. 1407–1415.
  35. Roffo, G., Melzi, S. and Cristani, M. (2015). Infinite feature selection, Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, pp. 4202–4210.
  36. Roy, R., Ghosh, S. and Ghosh, A. (2018). Speckle de-noising of clinical ultrasound images based on fuzzy spel conformity in its adjacency, Applied Soft Computing73: 394–417.10.1016/j.asoc.2018.08.014
  37. Shan, J., Alam, S.K., Garra, B., Zhang, Y. and Ahmed, T. (2016). Computer-aided diagnosis for breast ultrasound using computerized BI-RADS features and machine learning methods, Ultrasound in Medicine and Biology42(4): 980–988.10.1016/j.ultrasmedbio.2015.11.01626806441
  38. Shi, X., Cheng, H.-D., Hu, L., Ju, W. and Tian, J. (2010). Detection and classification of masses in breast ultrasound images, Digital Signal Processing20(3): 824–836.10.1016/j.dsp.2009.10.010
  39. Simeone, P., Marrocco, C. and Tortorella, F. (2012). Design of reject rules for ECOC classification systems, Pattern Recognition45(2): 863–875.10.1016/j.patcog.2011.08.001
  40. Singh, B.K., Verma, K., Panigrahi, L. and Thoke, A. (2017a). Integrating radiologist feedback with computer aided diagnostic systems for breast cancer risk prediction in ultrasonic images: An experimental investigation in machine learning paradigm, Expert Systems with Applications90: 209–223.10.1016/j.eswa.2017.08.020
  41. Singh, K., Ranade, S.K. and Singh, C. (2017b). A hybrid algorithm for speckle noise reduction of ultrasound images, Computer Methods and Programs in Biomedicine148: 55–69.10.1016/j.cmpb.2017.06.00928774439
  42. Tesfahun, A. and Bhaskari, D.L. (2013). Intrusion detection using random forests classifier with smote and feature reduction, International Conference on Cloud & Ubiquitous Computing & Emerging Technologies (CUBE), Pune, India, pp. 127–132.
  43. Tortorella, F. (2000). An optimal reject rule for binary classifiers, in F.J. Ferri et al. (Eds), Advances in Pattern Recognition, SSPR/SPR 2000, Lecture Notes in Computer Science, Vol. 1876, Springer, Berlin/Heidelberg, pp. 611–620.10.1007/3-540-44522-6_63
  44. Tortorella, F. (2004). Reducing the classification cost of support vector classifiers through an ROC-based reject rule, Pattern Analysis and Applications7(2): 128–143.10.1007/s10044-004-0209-2
  45. Wang, Z., Wang, Z., He, S., Gu, X. and Yan, Z.F. (2017). Fault detection and diagnosis of chillers using Bayesian network merged distance rejection and multi-source non-sensor information, Applied Energy188: 200–214.10.1016/j.apenergy.2016.11.130
  46. Wu, G. and Chang, E.Y. (2005). KBA: Kernel boundary alignment considering imbalanced data distribution, IEEE Transactions on Knowledge and Data Engineering17(6): 786–795.10.1109/TKDE.2005.95
  47. Yassin, N.I., Omran, S., El Houby, E.M. and Allam, H. (2017). Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: A systematic review, Computer Methods and Programs in Biomedicine156: 25-45.10.1016/j.cmpb.2017.12.01229428074
  48. Yu, H. and Ni, J. (2014). An improved ensemble learning method for classifying high-dimensional and imbalanced biomedicine data, IEEE/ACM Transactions on Computational Biology and Bioinformatics11(4): 657–666.10.1109/TCBB.2014.230683826356336
  49. Yu, X., Hao, X., Wan, J., Wang, Y., Yu, L. and Liu, B. (2018). Correlation between ultrasound appearance of small breast cancer and axillary lymph node metastasis, Ultrasound in Medicine & Biology44(2): 342–349.10.1016/j.ultrasmedbio.2017.09.02029150365
  50. Zhang, J., Lin, G., Wu, L., Wang, C. and Cheng, Y. (2015). Wavelet and fast bilateral filter based de-speckling method for medical ultrasound images, Biomedical Signal Processing and Control18: 1–10.10.1016/j.bspc.2014.11.010
  51. Zhou, S., Shi, J., Zhu, J., Cai, Y. and Wang, R. (2013). Shearlet-based texture feature extraction for classification of breast tumor in ultrasound image, Biomedical Signal Processing and Control8(6): 688–696.10.1016/j.bspc.2013.06.011
DOI: https://doi.org/10.34768/amcs-2020-0025 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 325 - 336
Submitted on: Mar 30, 2019
Accepted on: Dec 20, 2019
Published on: Jul 4, 2020
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Hongjiao Guan, Yingtao Zhang, Heng-Da Cheng, Xianglong Tang, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.