Adamiak, R., Blazewicz, J., Formanowicz, P., Gdaniec, Z., Kasprzak, M., Popenda, M. and Szachniuk, M. (2004). An algorithm for an automatic NOE pathways analysis in 2D NMR spectra of RNA duplexes, Journal of Computational Biology42(11): 163–180.10.1089/10665270477341694815072694
Adrjanowicz, K., Kaminski, K., Tarnacka, M., Szutkowski, K., Popenda, L., Bartkowiak, G. and Paluch, M. (2016). The effect of hydrogen bonding propensity and enantiomeric composition on the dynamics of supercooled ketoprofen—Dielectric, rheological and NMR studies, Physical Chemistry Chemical Physics18(15): 10585–10593.10.1039/C6CP00578K
Antczak, M., Popenda, M., Zok, T., Sarzynska, J., Ratajczak, T., Tomczyk, K., Adamiak, R.W. and Szachniuk, M. (2016). New functionality of RNAComposer: Application to shape the axis of miR160 precursor structure, Acta Biochimica Polonica63(4): 737–744.10.18388/abp.2016_132927741327
Antczak, M., Popenda, M., Zok, T., Zurkowski, M., Adamiak, R.W. and Szachniuk, M. (2018). New algorithms to represent complex pseudoknotted RNA structures in dot-bracket notation, Bioinformatics34(8): 1304–1312.10.1093/bioinformatics/btx783590566029236971
Antczak, M., Zok, T., Popenda, M., Lukasiak, P., Adamiak, R.W., Blazewicz, J. and Szachniuk, M. (2014). RNApdbee—A webserver to derive secondary structures from PDB files of knotted and unknotted RNAs, Nucleic Acids Research42(W1): W368–W372.10.1093/nar/gku330408611224771339
Blazewicz, J., Figlerowicz, M., Kasprzak, M., Nowacka, M. and Rybarczyk, A. (2011). RNA partial degradation problem: Motivation, complexity, algorithm, Journal of Computational Biology18(6): 821–834.10.1089/cmb.2010.015321563977
Blazewicz, J., Frohmberg, W., Gawron, P., Kasprzak, M., Kierzynka, M., Swiercz, A. and Wojciechowski, P. (2013). DNA sequence assembly involving an acyclic graph model, Foundations of Computing and Decision Sciences38(1): 25–34.10.2478/v10209-011-0019-4
Blazewicz, J., Kasprzak, M., Kierzynka, M., Frohmberg, W., Swiercz, A., Wojciechowski, P. and Zurkowski, P. (2018). Graph algorithms for DNA sequencing—Origins, current models and the future, European Journal of Operational Research264(3): 799–812.10.1016/j.ejor.2016.06.043
Blazewicz, J., Szachniuk, M. and Wojtowicz, A. (2005). RNA tertiary structure determination: NOE pathways construction by tabu search, Bioinformatics21(10): 2356–2361.10.1093/bioinformatics/bti35115731205
Bon, M., Micheletti, C. and Orland, H. (2012). McGenus: a Monte Carlo algorithm to predict RNA secondary structures with pseudoknots, Nucleic Acids Research41(3): 1895–1900.10.1093/nar/gks1204356194523248008
Bon, M., Vernizzi, G., Orland, H. and Zee, A. (2008). Topological classification of RNA structures, Journal of Molecular Biology379(4): 900–911.10.1016/j.jmb.2008.04.03318485361
Bron, C. and Kerbosch, J. (1973). Algorithm 457: Finding all cliques of an undirected graph, Communications of the ACM16(9): 575–577.10.1145/362342.362367
Cheng, L., Connor, T.R., Siren, J., Aanensen, D.M. and Corander, J. (2013). Hierarchical and spatially explicit clustering of DNA sequences with BAPS software, Molecular Biology and Evolution30(5): 1224–1228.10.1093/molbev/mst028367073123408797
Desai, N., Brown, A.A. and Ramakrishnan, V. (2017). The structure of the yeast mitochondrial ribosome, Science355(6324): 528–531.10.1126/science.aal2415529564328154081
Gan, H.H., Pasquali, S. and Schlick, T. (2003). Exploring the repertoire of RNA secondary motifs using graph theory: Implications for RNA design, Nucleic Acids Research31(11): 2926–2943.10.1093/nar/gkg36515670912771219
Gebert, J., Lätsch, M., Pickl, S.W., Weber, G. and Wünschiers, R. (2006). An algorithm to analyze stability of gene-expression patterns, Discrete Applied Mathematics154(7): 1140–1156.10.1016/j.dam.2004.08.011
Giuliani, A., Krishnan, A., Zbilut, J. and Tomita, M. (2008). Proteins as networks: Usefulness of graph theory in protein science, Current Protein & Peptide Science9(1): 28–38.10.2174/13892030878356570518336321
Kropat, E., Özmen, A., Weber, G., Meyer-Nieberg, S. and Defterli, O. (2016). Fuzzy prediction strategies for gene-environment networks—Fuzzy regression analysis for two-modal regulatory systems, RAIRO Operations Research50(2): 413–435.10.1051/ro/2015044
Kruthika, H.A., Mahindrakar, A.D. and Pasumarthy, R. (2017). Stability analysis of nonlinear time-delayed systems with application to biological models, International Journal of Applied Mathematics and Computer Science27(1): 91–103, DOI: 10.1515/amcs-2017-0007.10.1515/amcs-2017-0007
Kuang, R., Leslie, C.S. and Yang, A.-S. (2004). Protein backbone angle prediction with machine learning approaches, Bioinformatics20(10): 1612–1621.10.1093/bioinformatics/bth13614988121
Kucharík, M., Hofacker, I.L., Stadler, P.F. and Qin, J. (2016). Pseudoknots in RNA folding landscapes, Bioinformatics32(2): 187–194.10.1093/bioinformatics/btv572470810826428288
Kuppusamy, L. and Mahendran, A. (2016). Modelling DNA and RNA secondary structures using matrix insertion–deletion systems, International Journal of Applied Mathematics and Computer Science26(1): 245–258, DOI: 10.1515/amcs-2016-0017.10.1515/amcs-2016-0017
Lai, D., Proctor, J.R., Zhu, J.Y.A. and Meyer, I.M. (2012). R-CHIE: A web server and R package for visualizing RNA secondary structures, Nucleic Acids Research40(12): e95.10.1093/nar/gks241338435022434875
Leontis, N.B. and Zirbel, C.L. (2012). Nonredundant 3D structure datasets for RNA knowledge extraction and benchmarking, in N. Leontis and E. Westhof (Eds), Nucleic Acids and Molecular Biology, Springer Nature, Berlin/Heidelberg, pp. 281–298.10.1007/978-3-642-25740-7_13
Lim, C.S. and Brown, C.M. (2018). Know your enemy: Successful bioinformatic approaches to predict functional RNA structures in viral RNAs, Frontiers in Microbiology8: 2582.10.3389/fmicb.2017.02582575854829354101
Lu, X.-J. and Olson, W.K. (2008). 3DNA: A versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures, Nature Protocols3(7): 1213–1227.10.1038/nprot.2008.104306535418600227
Lukasiak, P., Antczak, M., Ratajczak, T., Szachniuk, M., Popenda, M., Adamiak, R.W. and Blazewicz, J. (2015). RNAssess—A web server for quality assessment of RNA 3D structures, Nucleic Acids Research43(W1): W502–W506.10.1093/nar/gkv557448924226068469
Magnus, M., Antczak, M., Zok, T., Wiedemann, J., Lukasiak, P., Cao, Y., Bujnicki, J.M., Westhof, E., Szachniuk, M. and Miao, Z. (2020). RNA-Puzzles toolkit: A computational resource of RNA 3D structure benchmark datasets, structure manipulation, and evaluation tools, Nucleic Acids Research48(2): 576–588.10.1093/nar/gkz1108714551131799609
Miao, Z. and Westhof, E. (2017). RNA structure: Advances and assessment of 3D structure prediction, Annual Review of Biophysics46: 483–503.10.1146/annurev-biophys-070816-03412528375730
Miskiewicz, J. and Szachniuk, M. (2018). Discovering structural motifs in miRNA precursors from the Viridiplantae kingdom, Molecules23(6): 1367.10.3390/molecules23061367610013529882777
Morimura, H., Tanaka, S.-I., Ishitobi, H., Mikami, T., Kamachi, Y., Kondoh, H. and Inouye, Y. (2013). Nano-analysis of DNA conformation changes induced by transcription factor complex binding using plasmonic nanodimers, ACS Nano7(12): 10733–10740.10.1021/nn403625s24195575
Parisien, M., Cruz, J.A., Westhof, E. and Major, F. (2009). New metrics for comparing and assessing discrepancies between RNA 3D structures and models, RNA15(10): 1875–1885.10.1261/rna.1700409274303819710185
Pasquali, S., Gan, H. and Schlick, T. (2005). Modular RNA architecture revealed by computational analysis of existing pseudoknots and ribosomal RNAs, Nucleic Acids Research33(4): 1384–1398.10.1093/nar/gki26755295515745998
Pillsbury, M., Orland, H. and Zee, A. (2005). Steepest descent calculation of RNA pseudoknots, Physical Review E72(1).10.1103/PhysRevE.72.01191116090005
Popenda, L., Bielecki, L., Gdaniec, Z. and Adamiak, R.W. (2009). Structure and dynamics of adenosine bulged RNA duplex reveals formation of the dinucleotide platform in the C:G-A triple, Arkivoc2009(3): 130–144.10.3998/ark.5550190.0010.311
Popenda, M., Miskiewicz, J., Sarzynska, J., Zok, T. and Szachniuk, M. (2020). Topology-based classification of tetrads and quadruplex structures, Bioinformatics36(4): 1129–1134.10.1093/bioinformatics/btz738703177831588513
Pugalenthi, G., Suganthan, P.N., Sowdhamini, R. and Chakrabarti, S. (2007). SMotif: A server for structural motifs in proteins, Bioinformatics23(5): 637–638.10.1093/bioinformatics/btl67917237055
Purzycka, K., Popenda, M., Szachniuk, M., Antczak, M., Lukasiak, P., Blazewicz, J. and Adamiak, R. (2015). Automated 3D RNA structure prediction using the RNAComposer method for riboswitches, in S.J. Chen and D.H. Burke Aguero (Eds), Methods in Enzymology, Vol. 553, Elsevier, San Diego, CA, pp. 3–34.
Radom, M., Rybarczyk, A., Szawulak, B., Andrzejewski, H., Chabelski, P., Kozak, A. and Formanowicz, P. (2017). Holmes: A graphical tool for development, simulation and analysis of Petri net based models of complex biological systems, Bioinformatics33(23): 3822–3823.10.1093/bioinformatics/btx49228961696
Rietveld, K., Poelgeest, R.V., Pleij, C., Boom, J.V. and Bosch, L. (1982). The tRNA-like structure at the 3' terminus of turnip yellow mosaic virus RNA. Differences and similarities with canonical tRNA, Nucleic Acids Research10(6): 1929–1946.
Rybarczyk, A., Hertz, A., Kasprzak, M. and Blazewicz, J. (2017). Tabu search for the RNA partial degradation problem, International Journal of Applied Mathematics and Computer Science27(2): 401–415, DOI: 10.1515/amcs-2017-0028.10.1515/amcs-2017-0028
Sarzynska, J. and Kulinski, T. (2005). Dynamics and stability of GCAA tetraloops with 2-aminopurine and purine substitutions, Journal of Biomolecular Structure and Dynamics22(4): 425–439.10.1080/07391102.2005.1050701415588106
Seetin, M. and Mathews, D. (2011). Automated RNA tertiary structure prediction from secondary structure and low-resolution restraints, Journal of Computational Chemistry32(10): 2232–2244.10.1002/jcc.21806328833421509787
Shi, Y.-Z., Jin, L., Feng, C.-J., Tan, Y.-L. and Tan, Z.-J. (2018). Predicting 3D structure and stability of RNA pseudoknots in monovalent and divalent ion solutions, PLOS Computational Biology14(6): e1006222.10.1371/journal.pcbi.1006222600793429879103
Slabinski, L., Jaroszewski, L., Rodrigues, A.P., Rychlewski, L., Wilson, I.A., Lesley, S.A. and Godzik, A. (2007). The challenge of protein structure determination-lessons from structural genomics, Protein Science16(11): 2472–2482.10.1110/ps.073037907221168717962404
Staple, D.W. and Butcher, S.E. (2005). Pseudoknots: RNA structures with diverse functions, PLoS Biology3(6): e213.10.1371/journal.pbio.0030213114949315941360
Sun, T.-t., Zhao, C. and Chen, S.-J. (2018). Predicting cotranscriptional folding kinetics for riboswitch, The Journal of Physical Chemistry B122(30): 7484–7496.10.1021/acs.jpcb.8b04249634527729985608
Szachniuk, M. (2019). RNApolis: Computational platform for RNA structure analysis, Foundations of Computing and Decision Sciences44(2): 241–257.10.2478/fcds-2019-0012
Szachniuk, M., Cola, M.C.D., Felici, G. and Blazewicz, J. (2014). The orderly colored longest path problem—A survey of applications and new algorithms, RAIRO—Operations Research48(1): 25–51.10.1051/ro/2013046
Szachniuk, M., Cola, M.C.D., Felici, G., de Werra, D. and Blazewicz, J. (2015). Optimal pathway reconstruction on 3D NMR maps, Discrete Applied Mathematics182: 134–149.10.1016/j.dam.2014.04.010
Szostak, N., Royo, F., Rybarczyk, A., Szachniuk, M., Blazewicz, J., del Sol, A. and Falcon-Perez, J.M. (2014). Sorting signal targeting mRNA into hepatic extracellular vesicles, RNA Biology11(7): 836–844.10.4161/rna.29305417995824921245
Vernizzi, G., Orland, H. and Zee, A. (2016). Classification and predictions of RNA pseudoknots based on topological invariants, Physical Review E94(4).10.1103/PhysRevE.94.04241027841638
Weber, G., Defterli, O., Gök, S.Z.A. and Kropat, E. (2011). Modeling, inference and optimization of regulatory networks based on time series data, European Journal of Operational Research211(1): 1–14.10.1016/j.ejor.2010.06.038
Weber, G., Kropat, E., Akteke-Öztürk, B. and Görgülü, Z. (2009). A survey on OR and mathematical methods applied on gene-environment networks, CEJOR17(3): 315–341.10.1007/s10100-009-0092-4
Wiedemann, J., Zok, T., Milostan, M. and Szachniuk, M. (2017). LCS-TA to identify similar fragments in RNA 3D structures, BMC Bioinformatics18(1): 456.10.1186/s12859-017-1867-6565159829058576
Wojciechowski, P., Frohmberg, W., Kierzynka, M., Zurkowski, P. and Blazewicz, J. (2016). G-MAPSEQ—A new method for mapping reads to a reference genome, Foundations of Computing and Decision Sciences41(2): 123–142.10.1515/fcds-2016-0007
Zemla, A. (2003). LGA: A method for finding 3D similarities in protein structures, Nucleic Acids Research31(13): 3370–3374.10.1093/nar/gkg57116897712824330
Zok, T., Antczak, M., Riedel, M., Nebel, D., Villmann, T., Lukasiak, P., Blazewicz, J. and Szachniuk, M. (2015). Building the library of RNA 3D nucleotide conformations using the clustering approach, International Journal of Applied Mathematics and Computer Science25(3): 689–700, DOI: 10.1515/amcs-2015-0050.10.1515/amcs-2015-0050
Zok, T., Antczak, M., Zurkowski, M., Popenda, M., Blazewicz, J., Adamiak, R.W. and Szachniuk, M. (2018). RNApdbee 2.0: Multifunctional tool for RNA structure annotation, Nucleic Acids Research46(W1): W30–W35.