Alcalde, C., Burusco, A., Díaz-Moreno, J.C. and Medina, J. (2017). Fuzzy concept lattices and fuzzy relation equations in the retrieval processing of images and signals, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems25(Supplement-1): 99–120.10.1142/s0218488517400050
Benítez-Caballero, M.J., Medina, J., Ramírez-Poussa, E. and Ślęzak, D. (2020). A computational procedure for variable selection preserving different initial conditions, International Journal of Computer Mathematics97(1–2): 387–404.10.1080/00207160.2019.1613530
Bustince, H., Madrid, N. and Ojeda-Aciego, M. (2015). The notion of weak-contradiction: Definition and measures, IEEE Transactions on Fuzzy Systems23(4): 1057–1069.10.1109/TFUZZ.2014.2337934
Cornejo, M.E., Díaz-Moreno, J.C. and Medina, J. (2017a). Multi-adjoint relation equations: A decision support system for fuzzy logic, International Journal of Intelligent Systems32(8): 778–800.10.1002/int.21889
Cornejo, M.E., Medina, J. and Ramírez-Poussa, E. (2017b). Attribute and size reduction mechanisms in multi-adjoint concept lattices, Journal of Computational and Applied Mathematics318: 388–402.10.1016/j.cam.2016.07.012
Cornejo, M.E., Medina, J. and Ramírez-Poussa, E. (2018b). Characterizing reducts in multi-adjoint concept lattices, Information Sciences422: 364–376.10.1016/j.ins.2017.08.099
Cornelis, C., Medina, J. and Verbiest, N. (2014). Multi-adjoint fuzzy rough sets: Definition, properties and attribute selection, International Journal of Approximate Reasoning55(1): 412–426.10.1016/j.ijar.2013.09.007
Denecke, K., Erné, M. and Wismath, S.L. (Eds) (2004). Galois Connections and Applications, Kluwer Academic Publishers, Dordrecht.10.1007/978-1-4020-1898-5
Di Nola, A., Sanchez, E., Pedrycz, W. and Sessa, S. (1989). Fuzzy Relation Equations and Their Applications to Knowledge Engineering, Kluwer Academic Publishers, Norwell, MA.10.1007/978-94-017-1650-5
Díaz-Moreno, J.C. and Medina, J. (2013). Multi-adjoint relation equations: Definition, properties and solutions using concept lattices, Information Sciences253: 100–109.10.1016/j.ins.2013.07.024
Díaz-Moreno, J.C., Medina, J. and Turunen, E. (2017). Minimal solutions of general fuzzy relation equations on linear carriers. An algebraic characterization, Fuzzy Sets and Systems311: 112–123.
Grant, J. and Hunter, A. (2006). Measuring inconsistency in knowledge bases, Journal of Intelligent Information Systems27(2): 159–184.10.1007/s10844-006-2974-4
Hassanien, A.E., Abraham, A., Peters, J.F., Schaefer, G. and Henry, C. (2009). Rough sets and near sets in medical imaging: A review, IEEE Transactions on Information Technology in Biomedicine13(6): 955–968.10.1109/TITB.2009.201701719304490
Hassanien, A.E., Schaefer, G. and Darwish, A. (2010). Computational intelligence in speech and audio processing: Recent advances, in X.-Z. Gao et al. (Eds), Soft Computing in Industrial Applications, Springer, Berlin/Heidelberg, pp. 303–311.10.1007/978-3-642-11282-9_32
Kortelainen, J. (1994). On relationship between modified sets, topological spaces and rough sets, Fuzzy Sets and Systems61(1): 91–95.10.1016/0165-0114(94)90288-7
Luo, C., Li, T., Chen, H., Fujita, H. and Yi, Z. (2018). Incremental rough set approach for hierarchical multicriteria classification, Information Sciences429: 72–87.10.1016/j.ins.2017.11.004
Madrid, N. (2017). An extension of f-transforms to more general data: Potential applications, Soft Computing21(13): 3551–3565.10.1007/s00500-017-2622-7
Madrid, N. and Ojeda-Aciego, M. (2011a). Measuring inconsistency in fuzzy answer set semantics, IEEE Transactions on Fuzzy Systems19(4): 605–622.10.1109/TFUZZ.2011.2114669
Madrid, N. and Ojeda-Aciego, M. (2011b). On the existence and unicity of stable models in normal residuated logic programs, International Journal of Computer Mathematics89(3): 310–324.10.1080/00207160.2011.580842
Madrid, N. and Ojeda-Aciego, M. (2017). A view of f-indexes of inclusion under different axiomatic definitions of fuzzy inclusion, in S. Moral et al. (Eds), Scalable Uncertainty Management, Springer, Cham, pp. 307–318.10.1007/978-3-319-67582-4_22
Madrid, N., Ojeda-Aciego, M., Medina, J. and Perfilieva, I. (2019). L-fuzzy relational mathematical morphology based on adjoint triples, Information Sciences474: 75–89.10.1016/j.ins.2018.09.028
Medina, J. (2012b). Relating attribute reduction in formal, object-oriented and property-oriented concept lattices, Computers & Mathematics with Applications64(6): 1992–2002.10.1016/j.camwa.2012.03.087
Medina, J. (2017). Minimal solutions of generalized fuzzy relational equations: Clarifications and corrections towards a more flexible setting, International Journal of Approximate Reasoning84: 33–38.10.1016/j.ijar.2017.02.002
Medina, J., Ojeda-Aciego, M. and Ruiz-Calviño, J. (2009). Formal concept analysis via multi-adjoint concept lattices, Fuzzy Sets and Systems160(2): 130–144.10.1016/j.fss.2008.05.004
Medina, J., Ojeda-Aciego, M. and Vojtáš, P. (2004). Similarity-based unification: A multi-adjoint approach, Fuzzy Sets and Systems146(1): 43–62.10.1016/j.fss.2003.11.005
Pagliani, P. (2014). The relational construction of conceptual patterns—Tools, implementation and theory, in M. Kryszkiewicz et al. (Eds), Rough Sets and Intelligent Systems Paradigms, Springer International Publishing, Cham, pp. 14–27.10.1007/978-3-319-08729-0_2
Pagliani, P. (2016). Covering Rough Sets and Formal Topology—A Uniform Approach Through Intensional and Extensional Constructors, Springer, Berlin/Heidelberg, pp. 109–145.
Pagliani, P. and Chakraborty, M. (2008). A Geometry of Approximation: Rough Set Theory Logic, Algebra and Topology of Conceptual Patterns (Trends in Logic), 1st Edn, Springer Publishing Company, Berlin/Heidelberg.10.1007/978-1-4020-8622-9
Perfilieva, I., Singh, A.P. and Tiwari, S.P. (2017). On the relationship among f-transform, fuzzy rough set and fuzzy topology, Soft Computing21(13): 3513–3523.10.1007/s00500-017-2559-x
Ronse, C. and Heijmans, H.J.A.M. (1991). The algebraic basis of mathematical morphology. II: Openings and closings, CVGIP: Image Understanding54(1): 74–97.
Shao, M.-W., Liu, M. and Zhang, W.-X. (2007). Set approximations in fuzzy formal concept analysis, Fuzzy Sets and Systems158(23): 2627–2640.10.1016/j.fss.2007.05.002
Skowron, A., Swiniarski, R. and Synak, P. (2004). Approximation spaces and information granulation, in S. Tsumoto et al. (Eds), Rough Sets and Current Trends in Computing, Springer, Berlin/Heidelberg, pp. 116–126.10.1007/978-3-540-25929-9_13
Slowinski, R. and Vanderpooten, D. (1997). Similarity relation as a basis for rough approximations, in P.P.Wang (Ed.), Advances in Machine Intelligence and Soft Computing, Duke University, Durham, NC, pp. 17–33.
Stell, J.G. (2007). Relations in mathematical morphology with applications to graphs and rough sets, in S. Winter et al. (Eds), Spatial Information Theory, Springer, Berlin, Heidelberg, pp. 438–454.10.1007/978-3-540-74788-8_27
Tan, A., Wu, W.-Z. and Tao, Y. (2018). A unified framework for characterizing rough sets with evidence theory in various approximation spaces, Information Sciences454–455: 144–160.10.1016/j.ins.2018.04.073
Varma, P.R.K., Kumari, V.V. and Kumar, S.S. (2015). A novel rough set attribute reduction based on ant colony optimisation, International Journal of Intelligent Systems Technologies and Applications14(3–4): 330–353.10.1504/IJISTA.2015.074333
Wille, R. (1982). Restructuring lattice theory: An approach based on hierarchies of concepts, in I. Rival (Ed.), Ordered Sets, Reidel, Dordrecht, pp. 445–470.10.1007/978-94-009-7798-3_15
Wille, R. (2005). Formal concept analysis as mathematical theory of concepts and concept hierarchies, in B. Ganter et al. (Eds), Formal Concept Analysis, Lecture Notes in Computer Science, Vol. 3626, Springer, Berlin/Heidelberg, pp. 1–33.10.1007/11528784_1
Yang, X., Li, T., Fujita, H., Liu, D. and Yao, Y. (2017). A unified model of sequential three-way decisions and multilevel incremental processing, Knowledge-Based Systems134: 172–188.10.1016/j.knosys.2017.07.031
Yao, Y. (1998b). Relational interpretations of neighborhood operators and rough set approximation operators, Information Sciences111(1): 239–259.10.1016/S0020-0255(98)10006-3
Yao, Y. and Chen, Y. (2006). Rough set approximations in formal concept analysis, in J.F. Peters and A. Skowron (Eds), Transactions on Rough Sets V, Springer, Berlin/Heidelberg, pp. 285–305.10.1007/11847465_14
Yao, Y. and Lingras, P. (1998). Interpretations of belief functions in the theory of rough sets, Information Sciences104(1): 81–106.10.1016/S0020-0255(97)00076-5
Yao, Y.Y. (1996). Two views of the theory of rough sets in finite universes, International Journal of Approximate Reasoning15(4): 291–317.10.1016/S0888-613X(96)00071-0
Yao, Y.Y. (2004). A comparative study of formal concept analysis and rough set theory in data analysis, in S. Tsumoto et al. (Eds), Rough Sets and Current Trends in Computing, Springer, Berlin/Heidelberg, pp. 59–68.10.1007/978-3-540-25929-9_6
Zhang, Q., Xie, Q. and Wang, G. (2016). A survey on rough set theory and its applications, CAAI Transactions on Intelligence Technology1(4): 323–333.10.1016/j.trit.2016.11.001