Ban, A., Brândaş, A., Coroianu, L., Negruţiu, C. and Nica, O. (2011). Approximations of fuzzy numbers by trapezoidal fuzzy numbers preserving the ambiguity and value, Computers and Mathematics with Applications61(5): 1379–1401.10.1016/j.camwa.2011.01.005
Casals, M.R., Corral, N., Gil, M. Á., López, M.T., Lubiano, M.A., Montenegro, M., Naval, G. and Salas, A. (2013). Bertoluzza et al.’s metric as a basis for analyzing fuzzy data, METRON71(3): 307–322.
Colubi, A. (2009). Statistical inference about the means of fuzzy random variables: Applications to the analysis of fuzzy- and real-valued data, Fuzzy Sets and Systems160(3): 344–356.10.1016/j.fss.2007.12.019
Colubi, A., Fernández-García, C. and Gil, M. (2002). Simulation of random fuzzy variables: An empirical approach to statistical/probabilistic studies with fuzzy experimental data, IEEE Transactions on Fuzzy Systems10(3): 384–390.10.1109/TFUZZ.2002.1006441
Delgado, M., Vila, M. and Voxman, W. (1998). On a canonical representation of a fuzzy number, Fuzzy Sets and Systems93(1): 125–135.10.1016/S0165-0114(96)00144-3
Gao, J.-Q., Fan, L.-Y., Li, L. and Xu, L.-Z. (2013). A practical application of kernel-based fuzzy discriminant analysis, International Journal of Applied Mathematics and Computer Science23(4): 887–903, DOI: 10.2478/amcs-2013-0066.10.2478/amcs-2013-0066
Gil, M., Montenegro, M., González-Rodríguez, G., Colubi, A. and Casals, M. (2006). Bootstrap approach to the multi-sample test of means with imprecise data, Computational Statistics and Data Analysis51(1): 148–162.10.1016/j.csda.2006.04.018
González-Rodríguez, G., Montenegro, M., Colubi, A. and Gil, M. (2006). Bootstrap techniques and fuzzy random variables: Synergy in hypothesis testing with fuzzy data, Fuzzy Sets and Systems157(19): 2608–2613.10.1016/j.fss.2003.11.021
Graham, R., Hinkley, D.V., John, P.W.M. and Shi, S. (1990). Balanced design of bootstrap simulations, Journal of the Royal Statistical Society B52(1): 185–202.10.1111/j.2517-6161.1990.tb01781.x
Grzegorzewski, P. (2008). Trapezoidal approximations of fuzzy numbers preserving the expected interval—Algorithms and properties, Fuzzy Sets and Systems159(11): 1354–1364.10.1016/j.fss.2007.12.001
Grzegorzewski, P. (2018). The Kolmogorov–Smirnov goodness-of-fit test for interval-valued data, in E. Gil et al. (Eds), The Mathematics of the Uncertain: A Tribute to Pedro Gil, Springer International Publishing, Cham, pp. 615–627.10.1007/978-3-319-73848-2_57
Grzegorzewski, P. and Hryniewicz, O. (2002). Computing with words and life data, International Journal of AppliedMathematics and Computer Science12(3): 337–345.
Grzegorzewski, P., Hryniewicz, O. and Romaniuk, M. (2019). Flexible bootstrap based on the canonical representation of fuzzy numbers, Proceedings of EUSFLAT 2019, Prague, Czech Republic, pp. 490–497.
Jimenez, M. and Rivas, J.A. (1998). Fuzzy number approximation, International Journal of Uncertainty, Fuzziness and Knowledge-based Systems6(1): 68–78.10.1142/S0218488598000057
Lubiano, M.A., Montenegro, M., Sinova, B., de la Rosa de Sáa, S. and Gil, M.A. (2016). Hypothesis testing for means in connection with fuzzy rating scale-based data: Algorithms and applications, European Journal of Operational Research251(3): 918–929.10.1016/j.ejor.2015.11.016
Lubiano, M.A., Salas, A., Carleos, C. and de la Rosa de Sáa, S.and Gil, M.A. (2017). Hypothesis testing-based comparative analysis between rating scales for intrinsically imprecise data, International Journal of Approximate Reasoning88: 128–147.10.1016/j.ijar.2017.05.007
Montenegro, M., Colubi, A., Casals, M. and Gil, M. (2004). Asymptotic and bootstrap techniques for testing the expected value of a fuzzy random variable, Metrika59(1): 31–49.10.1007/s001840300270
Puri, M. and Ralescu, D.A. (1986). Fuzzy random variables, Journal of the Mathematical Analysis and Applications114(2): 409–422.10.1016/0022-247X(86)90093-4
Ramos-Guajardo, A., Blanco-Fernández, A. and González-Rodríguez, G. (2019). Applying statistical methods with imprecise data to quality control in cheese manufacturing, in P. Grzegorzewski et al. (Eds), Soft Modeling in Industrial Manufacturing, Springer, Cham, pp. 127–147.10.1007/978-3-030-03201-2_8
Ramos-Guajardo, A. and Grzegorzewski, P. (2016). Distance-based linear discriminant analysis for interval-valued data, Information Sciences372: 591–607.10.1016/j.ins.2016.08.068
Ramos-Guajardo, A. and Lubiano, M. (2012). k-Sample tests for equality of variances of random fuzzy sets, Computational Statistics and Data Analysis56(4): 956–966.10.1016/j.csda.2010.11.025
Romaniuk, M. (2019). On some applications of simulations in estimation of maintenance costs and in statistical tests for fuzzy settings, in A. Steland et al. (Eds), Stochastic Models, Statistics and Their Applications, Springer International Publishing, Cham, pp. 437–448.10.1007/978-3-030-28665-1_33
Romaniuk, M. and Hryniewicz, O. (2019a). Discrete and smoothed resampling methods for interval-valued fuzzy numbers, IEEE Transactions on Fuzzy Systems, DOI: 10.1109/TFUZZ.2019.2957253, (in press).10.1109/TFUZZ.2019.2957253
Romaniuk, M. and Hryniewicz, O. (2019b). Interval-based, nonparametric approach for resampling of fuzzy numbers, Soft Computing23(14): 5883–5903.10.1007/s00500-018-3251-5
Sinova, B., Gil, M.A., Colubi, A. and Aelst, S.V. (2012). The median of a random fuzzy number. The 1-norm distance approach, Fuzzy Sets and Systems200: 99–115.
Wang, D. and Hryniewicz, O. (2015). A fuzzy nonparametric Shewhart chart based on the bootstrap approach, International Journal of Applied Mathematics and Computer Science25(2): 389–401, DOI: 10.1515/amcs-2015-0030.10.1515/amcs-2015-0030