Have a personal or library account? Click to login

References

  1. Ban, A., Brândaş, A., Coroianu, L., Negruţiu, C. and Nica, O. (2011). Approximations of fuzzy numbers by trapezoidal fuzzy numbers preserving the ambiguity and value, Computers and Mathematics with Applications61(5): 1379–1401.10.1016/j.camwa.2011.01.005
  2. Ban, A., Coroianu, L. and Grzegorzewski, P. (2015). Fuzzy Numbers: Approximations, Ranking and Applications, Polish Academy of Sciences, Warsaw.
  3. Casals, M.R., Corral, N., Gil, M. Á., López, M.T., Lubiano, M.A., Montenegro, M., Naval, G. and Salas, A. (2013). Bertoluzza et al.’s metric as a basis for analyzing fuzzy data, METRON71(3): 307–322.
  4. Casella, G. (2003). Introduction to the silver anniversary of the bootstrap, Statistical Science18(2): 133–134.10.1214/ss/1063994967
  5. Chanas, S. (2001). On the interval approximation of a fuzzy number, Fuzzy Sets and Systems122(2): 353–356.10.1016/S0165-0114(00)00080-4
  6. Colubi, A. (2009). Statistical inference about the means of fuzzy random variables: Applications to the analysis of fuzzy- and real-valued data, Fuzzy Sets and Systems160(3): 344–356.10.1016/j.fss.2007.12.019
  7. Colubi, A., Fernández-García, C. and Gil, M. (2002). Simulation of random fuzzy variables: An empirical approach to statistical/probabilistic studies with fuzzy experimental data, IEEE Transactions on Fuzzy Systems10(3): 384–390.10.1109/TFUZZ.2002.1006441
  8. Davison, A.C., Hinkley, D.V. and Schechtman, E. (1986). Efficient bootstrap simulation, Biometrika73(3): 555–566.10.1093/biomet/73.3.555
  9. De Angelis, D. and Young, G.A. (1992). Smoothing the bootstrap, International Statistical Review60(1): 45–56.10.2307/1403500
  10. Delgado, M., Vila, M. and Voxman, W. (1998). On a canonical representation of a fuzzy number, Fuzzy Sets and Systems93(1): 125–135.10.1016/S0165-0114(96)00144-3
  11. Denoeux, T., Masson, M.-H. and Hébert, P.-A. (2005). Nonparametric rank-based statistics and significance tests for fuzzy data, Fuzzy Sets and Systems153(1): 1–28.10.1016/j.fss.2005.01.008
  12. Dubois, D. and Prade, H. (1987). The mean value of a fuzzy number, Fuzzy Sets and Systems24(3): 279–300.10.1016/0165-0114(87)90028-5
  13. Efron, B. (1979). Bootstrap methods: Another look at the jackknife, Annals of Statistics7(1): 1–26.10.1214/aos/1176344552
  14. Gao, J.-Q., Fan, L.-Y., Li, L. and Xu, L.-Z. (2013). A practical application of kernel-based fuzzy discriminant analysis, International Journal of Applied Mathematics and Computer Science23(4): 887–903, DOI: 10.2478/amcs-2013-0066.10.2478/amcs-2013-0066
  15. Gil, M., Montenegro, M., González-Rodríguez, G., Colubi, A. and Casals, M. (2006). Bootstrap approach to the multi-sample test of means with imprecise data, Computational Statistics and Data Analysis51(1): 148–162.10.1016/j.csda.2006.04.018
  16. González-Rodríguez, G., Montenegro, M., Colubi, A. and Gil, M. (2006). Bootstrap techniques and fuzzy random variables: Synergy in hypothesis testing with fuzzy data, Fuzzy Sets and Systems157(19): 2608–2613.10.1016/j.fss.2003.11.021
  17. Graham, R., Hinkley, D.V., John, P.W.M. and Shi, S. (1990). Balanced design of bootstrap simulations, Journal of the Royal Statistical Society B52(1): 185–202.10.1111/j.2517-6161.1990.tb01781.x
  18. Grzegorzewski, P. (2008). Trapezoidal approximations of fuzzy numbers preserving the expected interval—Algorithms and properties, Fuzzy Sets and Systems159(11): 1354–1364.10.1016/j.fss.2007.12.001
  19. Grzegorzewski, P. (2018). The Kolmogorov–Smirnov goodness-of-fit test for interval-valued data, in E. Gil et al. (Eds), The Mathematics of the Uncertain: A Tribute to Pedro Gil, Springer International Publishing, Cham, pp. 615–627.10.1007/978-3-319-73848-2_57
  20. Grzegorzewski, P. and Hryniewicz, O. (2002). Computing with words and life data, International Journal of AppliedMathematics and Computer Science12(3): 337–345.
  21. Grzegorzewski, P., Hryniewicz, O. and Romaniuk, M. (2019). Flexible bootstrap based on the canonical representation of fuzzy numbers, Proceedings of EUSFLAT 2019, Prague, Czech Republic, pp. 490–497.
  22. Hall, P., DiCiccio, T. and Romano, J. (1989). On smoothing and the bootstrap, Annals of Statistics17(2): 692–704.10.1214/aos/1176347135
  23. Heilpern, S. (1992). The expected value of a fuzzy number, Fuzzy Sets and Systems47(1): 81–86.10.1016/0165-0114(92)90062-9
  24. Jimenez, M. and Rivas, J.A. (1998). Fuzzy number approximation, International Journal of Uncertainty, Fuzziness and Knowledge-based Systems6(1): 68–78.10.1142/S0218488598000057
  25. Lubiano, M.A., Montenegro, M., Sinova, B., de la Rosa de Sáa, S. and Gil, M.A. (2016). Hypothesis testing for means in connection with fuzzy rating scale-based data: Algorithms and applications, European Journal of Operational Research251(3): 918–929.10.1016/j.ejor.2015.11.016
  26. Lubiano, M.A., Salas, A., Carleos, C. and de la Rosa de Sáa, S.and Gil, M.A. (2017). Hypothesis testing-based comparative analysis between rating scales for intrinsically imprecise data, International Journal of Approximate Reasoning88: 128–147.10.1016/j.ijar.2017.05.007
  27. Montenegro, M., Colubi, A., Casals, M. and Gil, M. (2004). Asymptotic and bootstrap techniques for testing the expected value of a fuzzy random variable, Metrika59(1): 31–49.10.1007/s001840300270
  28. Pedrycz, W. (1994). Why triangular membership functions?, Fuzzy Sets and Systems64(1): 21–30.10.1016/0165-0114(94)90003-5
  29. Puri, M. and Ralescu, D.A. (1986). Fuzzy random variables, Journal of the Mathematical Analysis and Applications114(2): 409–422.10.1016/0022-247X(86)90093-4
  30. Ramos-Guajardo, A., Blanco-Fernández, A. and González-Rodríguez, G. (2019). Applying statistical methods with imprecise data to quality control in cheese manufacturing, in P. Grzegorzewski et al. (Eds), Soft Modeling in Industrial Manufacturing, Springer, Cham, pp. 127–147.10.1007/978-3-030-03201-2_8
  31. Ramos-Guajardo, A. and Grzegorzewski, P. (2016). Distance-based linear discriminant analysis for interval-valued data, Information Sciences372: 591–607.10.1016/j.ins.2016.08.068
  32. Ramos-Guajardo, A. and Lubiano, M. (2012). k-Sample tests for equality of variances of random fuzzy sets, Computational Statistics and Data Analysis56(4): 956–966.10.1016/j.csda.2010.11.025
  33. Romaniuk, M. (2019). On some applications of simulations in estimation of maintenance costs and in statistical tests for fuzzy settings, in A. Steland et al. (Eds), Stochastic Models, Statistics and Their Applications, Springer International Publishing, Cham, pp. 437–448.10.1007/978-3-030-28665-1_33
  34. Romaniuk, M. and Hryniewicz, O. (2019a). Discrete and smoothed resampling methods for interval-valued fuzzy numbers, IEEE Transactions on Fuzzy Systems, DOI: 10.1109/TFUZZ.2019.2957253, (in press).10.1109/TFUZZ.2019.2957253
  35. Romaniuk, M. and Hryniewicz, O. (2019b). Interval-based, nonparametric approach for resampling of fuzzy numbers, Soft Computing23(14): 5883–5903.10.1007/s00500-018-3251-5
  36. Silverman, B.W. and Young, G.A. (1987). The bootstrap: To smooth or not to smooth?, Biometrika74(3): 469–479.10.1093/biomet/74.3.469
  37. Sinova, B., Gil, M.A., Colubi, A. and Aelst, S.V. (2012). The median of a random fuzzy number. The 1-norm distance approach, Fuzzy Sets and Systems200: 99–115.
  38. Wang, D. and Hryniewicz, O. (2015). A fuzzy nonparametric Shewhart chart based on the bootstrap approach, International Journal of Applied Mathematics and Computer Science25(2): 389–401, DOI: 10.1515/amcs-2015-0030.10.1515/amcs-2015-0030
DOI: https://doi.org/10.34768/amcs-2020-0022 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 281 - 297
Submitted on: Nov 16, 2019
Accepted on: Apr 29, 2020
Published on: Jul 4, 2020
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Przemyslaw Grzegorzewski, Olgierd Hryniewicz, Maciej Romaniuk, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.