Have a personal or library account? Click to login
On three methods for bounding the rate of convergence for some continuous–time Markov chains Cover

On three methods for bounding the rate of convergence for some continuous–time Markov chains

Open Access
|Jul 2020

References

  1. Almasi, B., Roszik, J. and Sztrik, J. (2005). Homogeneous finite-source retrial queues with server subject to breakdowns and repairs, Mathematical and Computer Modelling42(5): 673–682.10.1016/j.mcm.2004.02.046
  2. Brugno, A., D’Apice, C., Dudin, A. and Manzo, R. (2017). Analysis of an MAP/PH/1 queue with flexible group service, International Journal of Applied Mathematics and Computer Science27(1): 119–131, DOI: 10.1515/amcs-2017-0009.10.1515/amcs-2017-0009
  3. Crescenzo, A.D., Giorno, V., Kumar, B.K. and Nobile, A. (2018). A time-non-homogeneous double-ended queue with failures and repairs and its continuous approximation, Mathematics6(5): 81.10.3390/math6050081
  4. Doorn, E. V., Zeifman, A. and Panfilova, T. (2010). Bounds and asymptotics for the rate of convergence of birth-death processes, Theory of Probability and Its Applications54(1): 97–113.10.1137/S0040585X97984097
  5. Giorno, V., Nobile, A.G. and Spina, S. (2014). On some time non-homogeneous queueing systems with catastrophes, Applied Mathematics and Computation245: 220–234.10.1016/j.amc.2014.07.076
  6. Granovsky, B. and Zeifman, A. (2004). Nonstationary queues: Estimation of the rate of convergence, Queueing Systems46(3–4): 363–388.10.1023/B:QUES.0000027991.19758.b4
  7. Kalashnikov, V. (1971). Analysis of ergodicity of queueing systems by Lyapunov’s direct method, Automation and Remote Control32(4): 559–566.
  8. Kartashov, N. (1985). Criteria for uniform ergodicity and strong stability of Markov chains with a common phase space, Theory of Probability and Mathematical Statistics30: 71–89.10.1137/1130034
  9. Li, H., Zhao, Q. and Yang, Z. (2007). Reliability modeling of fault tolerant control systems, International Journal of Applied Mathematics and Computer Science17(4): 491–504, DOI: 10.2478/v10006-007-0041-0.10.2478/v10006-007-0041-0
  10. Li, J. and Zhang, L. (2017). MX/M/c queue with catastrophes and state-dependent control at idle time, Frontiers of Mathematics in China12(6): 1427–1439.10.1007/s11464-017-0674-8
  11. Liu, Y. (2012). Perturbation bounds for the stationary distributions of Markov chains, SIAM Journal on Matrix Analysis and Applications33(4): 1057–1074.10.1137/110838753
  12. Malyshev, V. and Menshikov, M. (1982). Ergodicity, continuity and analyticity of countable Markov chains, Transactions of the Moscow Mathematical Society1(148).
  13. Meyn, S. and Tweedie, R. (1993). Stability of Markovian processes. III: Foster–Lyapunov criteria for continuous time processes, Advances in Applied Probability25(3):518–548.
  14. Meyn, S. and Tweedie, R. (2012). Markov Chains and Stochastic Stability, Springer Science & Business Media, Berlin/Heidelberg/New York, NY.
  15. Mitrophanov, A. (2003). Stability and exponential convergence of continuous-time Markov chains, Journal of Applied Probability40(4): 970–979.10.1239/jap/1067436094
  16. Mitrophanov, A. (2004). The spectral gap and perturbation bounds for reversible continuous-time Markov chains, Journal of Applied Probability41(4): 1219–1222.10.1239/jap/1101840568
  17. Mitrophanov, A. (2018). Connection between the rate of convergence to stationarity and stability to perturbations for stochastic and deterministic systems, Proceedings of the 38th International Conference ‘Dynamics Days Europe’, DDE 2018, Loughborough, UK, pp. 3–7.
  18. Moiseev, A. and Nazarov, A. (2016). Queueing network MAP − (GI/∞)K with high-rate arrivals, European Journal of Operational Research254(1): 161–168.
  19. Nelson, R., Towsley, D. and Tantawi, A. (1988). Performance analysis of parallel processing systems, IEEE Transactions on Software Engineering14(4): 532–540.10.1109/32.4676
  20. Olwal, T.O., Djouani, K., Kogeda, O.P. and van Wyk, B.J. (2012). Joint queue-perturbed and weakly coupled power control for wireless backbone networks, International Journal of Applied Mathematics and Computer Science22(3): 749–764, DOI: 10.2478/v10006-012-0056-z.10.2478/v10006-012-0056-z
  21. Rudolf, D. and Schweizer, N. (2018). Perturbation theory for Markov chains via Wasserstein distance, Bernoulli24(4A): 2610–2639.10.3150/17-BEJ938
  22. Satin, Y., Zeifman, A. and Kryukova, A. (2019). On the rate of convergence and limiting characteristics for a nonstationary queueing model, Mathematics7(678): 1–11.10.3390/math7080678
  23. Schwarz, J., Selinka, G. and Stolletz, R. (2016). Performance analysis of time-dependent queueing systems: Survey and classification, Omega63: 170–189.10.1016/j.omega.2015.10.013
  24. Trejo, K.K., Clempner, J.B. and Poznyak, A.S. (2019). Proximal constrained optimization approach with time penalization, Engineering Optimization51(7): 1207–1228.10.1080/0305215X.2018.1519072
  25. Vvedenskaya, N., Logachov, A., Suhov, Y. and Yambartsev, A. (2018). A local large deviation principle for inhomogeneous birth-death processes, Problems of Information Transmission54(3): 263–280.10.1134/S0032946018030067
  26. Wieczorek, R. (2010). Markov chain model of phytoplankton dynamics, International Journal of Applied Mathematics and Computer Science20(4): 763–771, DOI: 10.2478/v10006-010-0058-7.10.2478/v10006-010-0058-7
  27. Zeifman, A. (1985). Stability for continuous-time nonhomogeneous Markov chains, in V.V. Kalashnikov and V.M. Zolotarev (Eds), Stability Problems for Stochastic Models, Springer, Berlin/Heidelberg, pp. 401–414.10.1007/BFb0074830
  28. Zeifman, A. (1989). Properties of a system with losses in the case of variable rates, Automation and Remote Control50(1): 82–87.
  29. Zeifman, A., Kiseleva, K., Satin, Y., Kryukova, A. and Korolev, V. (2018a). On a method of bounding the rate of convergence for finite Markovian queues, 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Moscow, Russia, pp. 1–5.10.1109/ICUMT.2018.8631216
  30. Zeifman, A. and Korolev, V. (2014). On perturbation bounds for continuous-time Markov chains, Statistics & Probability Letters88: 66–72.10.1016/j.spl.2014.01.031
  31. Zeifman, A., Korolev, V., Satin, Y. and Kiseleva, K. (2018b). Lower bounds for the rate of convergence for continuous-time inhomogeneous Markov chains with a finite state space, Statistics & Probability Letters137: 84–90.10.1016/j.spl.2018.01.001
  32. Zeifman, A., Korolev, V., Satin, Y., Korotysheva, A. and Bening, V. (2014a). Perturbation bounds and truncations for a class of Markovian queues, Queueing Systems76(2): 205–221.10.1007/s11134-013-9388-0
  33. Zeifman, A., Leorato, S., Orsingher, E., Satin, Y. and Shilova, G. (2006). Some universal limits for nonhomogeneous birth and death processes, Queueing Systems52(2): 139–151.10.1007/s11134-006-4353-9
  34. Zeifman, A., Razumchik, R., Satin, Y., Kiseleva, K., Korotysheva, K. and Korolev, V. (2018c). Bounds on the rate of convergence for one class of inhomogeneous Markovian queueing models with possible batch arrivals and services, International Journal of Applied Mathematics and Computer Science28(1): 141–154, DOI: 10.2478/amcs-2018-0011.10.2478/amcs-2018-0011
  35. Zeifman, A., Satin, Y., Korolev, V. and Shorgin, S. (2014b). On truncations for weakly ergodic inhomogeneous birth and death processes, International Journal of Applied Mathematics and Computer Science24(3): 503–518, DOI: 10.2478/amcs-2014-0037.10.2478/amcs-2014-0037
  36. Zeifman, A., Satin, Y. and Kryukova, A. (2019). Applications of differential inequalities to bounding the rate of convergence for continuous-time Markov chains, AIP Conference Proceedings2116(090009): 1–5.10.1063/1.5114074
DOI: https://doi.org/10.34768/amcs-2020-0020 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 251 - 266
Submitted on: Oct 8, 2019
Accepted on: Jan 20, 2020
Published on: Jul 4, 2020
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Alexander Zeifman, Yacov Satin, Anastasia Kryukova, Rostislav Razumchik, Ksenia Kiseleva, Galina Shilova, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.