Have a personal or library account? Click to login
Decentralized and distributed active fault diagnosis: Multiple model estimation algorithms Cover

Decentralized and distributed active fault diagnosis: Multiple model estimation algorithms

Open Access
|Jul 2020

References

  1. Ajgl, J. and Šimandl, M. (2011). Particle based probability density fusion with differential Shannon entropy criterion, Proceedings of the 14th International Conference on Information Fusion, Chicago, IL, USA, pp. 1–8.
  2. Ashari, A.E., Nikoukhah, R. and Campbell, S.L. (2012). Active robust fault detection in closed-loop systems: Quadratic optimization approach, IEEE Transactions on Automatic Control57(10): 2532–2544.10.1109/TAC.2012.2188430
  3. Bar-Shalom, Y. and Li, X. (1993). Estimation and Tracking: Principles, Techniques, and Software, Artech House, Boston, MA.
  4. Bar-Shalom, Y., Li, X.R. and Kirubarajan, T. (2001). Estimation with Applications to Tracking and Navigation, John Wiley & Sons, New York, NY.10.1002/0471221279
  5. Bertsekas, D.P. (2012). Dynamic Programming and Optimal Control, 4th Edn, Athena Scientific, Belmont, MA.
  6. Blackmore, L., Rajamanoharan, S. and Williams, B.C. (2008). Active estimation for jump Markov linear systems, IEEE Transactions on Automatic Control53(10): 2223–2236.10.1109/TAC.2008.2006100
  7. Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M. (2016). Diagnosis and Fault-tolerant Control, 3rd Edn, Springer-Verlag, Berlin.10.1007/978-3-662-47943-8
  8. Blom, H.A.P. and Bar-Shalom, Y. (1988). The interacting multiple model algorithm for systems with Markovian switching coefficients, IEEE Transactions on Automatic Control33(8): 780–783.10.1109/9.1299
  9. Eide, P. and Maybeck, P.S. (1996). An MMAE failure detection system for the F-16, IEEE Transactions on Aerospace and Electronic Systems32(3): 1125–1136.10.1109/7.532271
  10. Gustafsson, F. (2009). Automotive safety systems, IEEE Signal Processing Magazine26(4): 32–47.10.1109/MSP.2009.932618
  11. Hofbaur, M.W. and Williams, B.C. (2004). Hybrid estimation of complex systems, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics34(5): 2178–2191.10.1109/TSMCB.2004.835009
  12. Isermann, R. (2011). Fault-Diagnosis Applications, Springer, Heidelberg.10.1007/978-3-642-12767-0
  13. Julier, S.J. and Uhlmann, J.K. (1997). A non-divergent estimation algorithm in the presence of unknown correlations, Proceedings of the 1997 American Control Conference, Albuquerque, NM, USA, Vol. 4, pp. 2369–2373.
  14. Katipamula, S. and Brambley, M.R. (2011). Methods for fault detection, diagnostics, and prognostics for building systems: A Review. Part II, HVAC&R Research11(2): 169–187.
  15. Niemann, H. and Poulsen, N.K. (2014). Active fault detection in MIMO systems, Proceedings of the 2014 American Control Conference, Portland, OR, USA, pp. 1975–1980.
  16. Punčochář and Straka, O. (2019). Non-centralized active fault diagnosis for stochastic systems, 2019 American Control Conference, Philadelphia, PA, USA, pp. 5052–5057.
  17. Punčochář, I. and Šimandl, M. (2014). On infinite horizon active fault diagnosis for a class of non-linear non-Gaussian systems, International Journal of Applied Mathematics and Computer Science24(4): 795–807, DOI: 10.2478/amcs-2014-0059.10.2478/amcs-2014-0059
  18. Punčochář, I., Široký, J. and Šimandl, M. (2015). Constrained active fault detection and control, IEEE Transactions on Automatic Control60(1): 253–258.10.1109/TAC.2014.2326274
  19. Raimondo, D.M., Marseglia, G.R., Braatz, R.D. and Scott, J.K. (2016). Closed-loop input design for guaranteed fault diagnosis using set-valued observers, Automatica74: 107–117.10.1016/j.automatica.2016.07.033
  20. Škach, J., Punčochář, I. and Lewis, F.L. (2016). Optimal active fault diagnosis by temporal-difference learning, Proceedings of the 55th IEEE Conference on Decision and Control, Las Vegas, NV, USA, pp. 2146–2151.
  21. Straka, O. and Punčochář (2019). Decentralized and distributed active fault diagnosis for stochastic systems with indirect observations, 22nd International Conference on Information Fusion, Ottawa, Canada, pp. 1–8.
  22. Tslil, O., Aharon, O. and Carmi, A. (2018). Distributed estimation using particles intersection, Proceedings of the 21st International Conference on Information Fusion, Cambridge, UK, pp. 1653–1660.
  23. Vrabie, D., Vamvoudakis, K.G. and Lewis, F.L. (2013). Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles, 1st Edn, Institution of Engineering and Technology, London.10.1049/PBCE081E
  24. Watanabe, K. and Tzafestas, S.G. (1993). Generalized pseudo-Bayes estimation and detection for abruptly changing systems, Journal of Intelligent and Robotic Systems7(1): 95–112.10.1007/BF01258214
  25. Zhang, Y. and Li, X.-R. (1998). Detection and diagnosis of sensor and actuator failures using IMM estimator, IEEE Transactions on Aerospace and Electronic Systems34(4): 1293–1313.10.1109/7.722715
DOI: https://doi.org/10.34768/amcs-2020-0019 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 239 - 249
Submitted on: Sep 9, 2019
Accepted on: Apr 6, 2020
Published on: Jul 4, 2020
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Ondřej Straka, Ivo Punčochář, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.