Have a personal or library account? Click to login
Variable–structure repetitive control for discrete–time linear systems with multiple–period exogenous signals Cover

Variable–structure repetitive control for discrete–time linear systems with multiple–period exogenous signals

Open Access
|Jul 2020

References

  1. Bartoszewicz, A. and Lesniewski, P. (2016). New switching and nonswitching type reaching laws for SMC of discrete time systems, IEEE Transactions on Control Systems Technology24(2): 670–677.10.1109/TCST.2015.2440175
  2. Chen, S., Lai, Y.M., Tan, S.C. and Tse, C.K. (2009). Fast response low harmonic distortion control scheme for voltage source inverters, IET Power Electronics2(5): 575–584.10.1049/iet-pel.2008.0149
  3. Chen, X. and Tomizuka, M. (2014). New repetitive control with improved steady-state performance and accelerated transient, IEEE Transactions on Control Systems Technology22(2): 664–675.10.1109/TCST.2013.2253102
  4. Flores, J.V., Da Silva, J.M.G., Pereira, L.F.A. and Sbarbaro, D.G. (2012). Repetitive control design for MIMO systems with saturating actuators, IEEE Transactions on Automatic Control57(1): 192–198.10.1109/TAC.2011.2174829
  5. Francis, B. and Wonham, W. (1975). The internal model principle for linear multivariable regulators, Applied Mathematics and Optimization2(2): 170–194.10.1007/BF01447855
  6. Gao, W., Wang, Y. and Homaifa, A. (1995). Discrete-time variable structure control systems, IEEE Transactions on Industrial Electronics42(2): 117–122.10.1109/41.370376
  7. Grino, R. and Costa-Castello, R. (2005). Digital repetitive plug-in controller for odd-harmonic periodic references and disturbances, Automatica41(1): 153–157.10.1016/j.automatica.2004.08.006
  8. Hillerstrom, G. and Walgama, K. (1996). Repetitive control theory and applications—A survey, IFAC Proceedings Volumes29(1): 1446–1451.10.1016/S1474-6670(17)57870-2
  9. Hornik, T. and Zhong, Q.-C. (2011). A current-control strategy for voltage-source inverters in microgrids based on h and repetitive control, IEEE Transactions on Power Electronics26(3): 943–952.10.1109/TPEL.2010.2089471
  10. Kurniawan, E., Afandi, M.I. and Suryadi, S. (2017). Repetitive control system for tracking and rejection of multiple periodic signals, Proceedings of the 2017 International Conference on Robotics, Automation and Sciences, Melaka, Malaysia, pp. 1–5.
  11. Kurniawan, E., Cao, Z. and Man, Z. (2014). Design of robust repetitive control with time-varying sampling periods, IEEE Transactions on Industrial Electronics61(6): 2834–2841.10.1109/TIE.2013.2276033
  12. Kurniawan, E., Cao, Z., Mitrevska, M. and Man, Z. (2016a). Design of decentralized multi-input multi-output repetitive control systems, International Journal of Automation and Computing Science13(6): 615–623.10.1007/s11633-016-1013-3
  13. Kurniawan, E.,Wardoyo, R. and Gojali, E.A. (2016b). Tracking and robust performance of discrete-time model-based controller, Proceedings of the 2016 International Conference on Computer, Control, Informatics and Its Applications, Jakarta, Indonesia, pp. 28–32.10.1109/IC3INA.2016.7863018
  14. Li, C.X., Gu, G.Y., Yang, M.J. and Zhu, L.M. (2017). High-speed tracking of a nanopositioning stage using modified repetitive control, IEEE Transactions on Automation Science and Engineering14(3): 1467–1477.10.1109/TASE.2015.2428437
  15. Longman, R.W. (2010). On the theory and design of linear repetitive control systems, European Journal of Control16(5): 447–496.10.3166/ejc.16.447-496
  16. Lorenzini, C., Flores, J.V., Pereira, L.F.A. and Pereira, L.A. (2018). Resonant-repetitive controller with phase correction applied to uninterruptible power supplies, Control Engineering Practice77: 118–126.10.1016/j.conengprac.2018.05.005
  17. Lu, Y.S., Wu, B.X. and Lien, S.F. (2012). An improved sliding-mode repetitive learning control scheme using wavelet transform, Asian Journal of Control14(4): 991–1001.10.1002/asjc.433
  18. Ma, H., Li, Y. and Xiong, Z. (2019). Discrete-time sliding-mode control with enhanced power reaching law, IEEE Transactions on Industrial Electronics66(6): 4629–4638.10.1109/TIE.2018.2864712
  19. Mingxuan, S., Youyi, W. and Wang, D. (2005). Variable-structure repetitive control: A discrete-time strategy, IEEE Transactions on Industrial Electronics52(2): 610–616.10.1109/TIE.2005.844227
  20. Mitrevska, M., Cao, Z., Zheng, J., Kurniawan, E. and Man, Z. (2018). Design of a robust discrete-time phase lead repetitive control in frequency domain for a linear actuator with multiple phase uncertainties, International Journal of Control, Automation and Systems16(6): 2609–2620.10.1007/s12555-017-0208-x
  21. Muramatsu, H. and Katsura, S. (2018). An adaptive periodic-disturbance observer for periodic-disturbance suppression, IEEE Transactions on Industrial Informatics14(10): 4446–4456.10.1109/TII.2018.2804338
  22. Owens, D.H., Li, L.M. and Banks, S.P. (2004). Multi-periodic repetitive control system: A Lyapunov stability analysis for MIMO systems, International Journal of Control77(5): 504–515.10.1080/00207170410001682533
  23. Pérez-Arancibia, N.O., Tsao, T.C. and Gibson, J.S. (2010). A new method for synthesizing multiple-period adaptive-repetitive controllers and its application to the control of hard disk drives, Automatica46(7): 1186–1195.10.1016/j.automatica.2010.04.007
  24. Rashed, M., Klumpner, C. and Asher, G. (2013). Repetitive and resonant control for a single-phase grid-connected hybrid cascaded multilevel converter, IEEE Transactions on Power Electronics28(5): 2224–2234.10.1109/TPEL.2012.2218833
  25. Sakthivel, R., Selvaraj, P. and Kaviarasan, B. (2020). Modified repetitive control design for nonlinear systems with time delay based on T–S fuzzy model, IEEE Transactions on Systems, Man, and Cybernetics: Systems50(2): 646–655.10.1109/TSMC.2017.2756912
  26. Sun, Y., Qiang, H., Mei, X. and Teng, Y. (2018). Modified repetitive learning control with unidirectional control input for uncertain nonlinear systems, Neural Computing and Applications30: 2003–2012.10.1007/s00521-017-2983-y
  27. Tomei, P. and Verrelli, C.M. (2015). Linear repetitive learning controls for nonlinear systems by Padé approximants, International Journal of Adaptive Control and Signal Processing29(6): 783–804.10.1002/acs.2507
  28. Wang, Y., Wang, R., Xie, X. and Zhang, H. (2018). Observer-based h fuzzy control for modified repetitive control systems, Neurocomputing286: 141–149.10.1016/j.neucom.2018.01.064
  29. Zhang, J., Shi, P., Xia, Y. and Yang, H. (2019). Discrete-time sliding mode control with disturbance rejection, IEEE Transactions on Industrial Electronics66(10): 7967–7975.10.1109/TIE.2018.2879309
  30. Zhou, L., Cheng, L., She, J. and Zhang, Z. (2019). Generalized extended state observer–based repetitive control for systems with mismatched disturbances, International Journal of Robust and Nonlinear Control29(11): 3777–3792.10.1002/rnc.4582
  31. Zhou, L., She, J., Li, C. and Pan, C. (2016). Robust aperiodic-disturbance rejection in an uncertain modified repetitive-control system, International Journal of Applied Mathematics and Computer Science26(2): 285–295, DOI: 10.1515/amcs-2016-0020.10.1515/amcs-2016-0020
  32. Zhou, L., She, J., Zhang, X.M., Cao, Z. and Zhang, Z. (2020). Performance enhancement of repetitive-control systems and application to tracking control of chuck-workpiece systems, IEEE Transactions on Industrial Electronics67(5): 4056–4065.10.1109/TIE.2019.2921272
DOI: https://doi.org/10.34768/amcs-2020-0016 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 207 - 218
Submitted on: Aug 22, 2019
Accepted on: Mar 2, 2020
Published on: Jul 4, 2020
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Edi Kurniawan, Hendra G. Harno, Sensus Wijonarko, Bambang Widiyatmoko, Dwi Bayuwati, Purwowibowo Purwowibowo, Tatik Maftukhah, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.