Have a personal or library account? Click to login
A Genetic Algorithm for the Maximum 2–Packing Set Problem Cover

References

  1. Adacher, L. and Gemma, A. (2017). A robust algorithm to solve the signal setting problem considering different traffic assignment approaches, International Journal of Applied Mathematics and Computer Science27(4): 815–826, DOI: 10.1515/amcs-2017-0057.10.1515/amcs-2017-0057
  2. Adamic, L.A. and Huberman, B.A. (2000). Power-law distribution of the world wide web, Science287(5461): 2115–2115.10.1126/science.287.5461.2115a
  3. Agrawal, A., Klein, P. and Ravi, R. (1995). When trees collide: An approximation algorithm for the generalized Steiner problem on networks, SIAM Journal on Computing24(3): 440–456.10.1137/S0097539792236237
  4. Alon, U. (2007). An Introduction to Systems Biology: Design Principles of Biological Circuits, Chapman & Hall/CRC, Boca Raton, FL.10.1201/9781420011432
  5. Amaral, L.A.N., Scala, A., Barthélémy, M. and Stanley, H.E. (2000). Classes of small-world networks, Proceedings of the National Academy of Sciences97(21): 11149–11152.10.1073/pnas.2003271971716811005838
  6. Andrade, D.V., Resende, M.G. and Werneck, R.F. (2012). Fast local search for the maximum independent set problem, Journal of Heuristics18(4): 525–547.10.1007/s10732-012-9196-4
  7. Back, T. and Khuri, S. (1994). An evolutionary heuristic for the maximum independent set problem, IEEE World Congress on Computational Intelligence, Orlando, FL, USA, pp. 531–535.
  8. Baran, M. (2018). Closest paths in graph drawings under an elastic metric, International Journal of Applied Mathematics and Computer Science28(2): 387–397, DOI: 10.2478/amcs-2018-0029.10.2478/amcs-2018-0029
  9. Eiben, A.E. and Smith, J.E. (2015). Introduction to Evolutionary Computing, Natural Computing Series, 2nd Edn, Springer-Verlag, Berlin/Heidelberg.10.1007/978-3-662-44874-8
  10. Feitelson, D.G. (1996). Packing schemes for gang scheduling, in D. G. Feitelson and L. Rudolph (Eds), Workshop on Job Scheduling Strategies for Parallel Processing, Springer, Berlin/Heidelberg, pp. 89–110.10.1007/BFb0022289
  11. Flores-Lamas, A., Fernández-Zepeda, J.A. and Trejo-Sánchez, J.A. (2018). Algorithm to find a maximum 2-packing set in a cactus, Theoretical Computer Science725: 31–51.10.1016/j.tcs.2017.11.030
  12. Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M. and Gagné, C. (2012). DEAP: Evolutionary algorithms made easy, Journal of Machine Learning Research13(7): 2171–2175.
  13. Gairing, M., Geist, R.M., Hedetniemi, S.T. and Kristiansen, P. (2004a). A self-stabilizing algorithm for maximal 2-packing, Nordic Journal of Computing11(1): 1–11.
  14. Gairing, M., Goddard, W., Hedetniemi, S.T., Kristiansen, P. and McRae, A.A. (2004b). Distance-two information in self-stabilizing algorithms, Parallel Processing Letters14(03n04): 387–398.10.1142/S0129626404001970
  15. Garey, M.R. and Johnson, D.S. (2002). Computers and Intractability, Vol. 29, WH Freeman New York, NY.
  16. Gregor, D. and Lumsdaine, A. (2005). The parallel BGL: A generic library for distributed graph computations, Parallel Object-Oriented Scientific Computing (POOSC), Glasgow, UK, pp. 1–18.
  17. Hale, W.K. (1980). Frequency assignment: Theory and applications, Proceedings of the IEEE68(12): 1497–1514.10.1109/PROC.1980.11899
  18. Hochbaum, D.S. and Shmoys, D.B. (1985). A best possible heuristic for the k-center problem, Mathematics of Operations Research10(2): 180–184.10.1287/moor.10.2.180
  19. Holland, J.H. (1975). Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, University of Michigan Press, Ann Arbor, MI.
  20. Karp, R.M. (1972). Reducibility among combinatorial problems, in R.E. Miller et al. (Eds), Complexity of Computer Computations, Springer, Boston, MA, pp. 85–103.10.1007/978-1-4684-2001-2_9
  21. Knudsen, M. and Wiuf, C. (2008). A Markov chain approach to randomly grown graphs, Journal of Applied Mathematics2008: 1–14.10.1155/2008/190836
  22. Lamm, S., Sanders, P., Schulz, C., Strash, D. and Werneck, R.F. (2017). Finding near-optimal independent sets at scale, Journal of Heuristics23(4): 207–229.10.1007/s10732-017-9337-x
  23. Manne, F. and Mjelde, M. (2006). A memory efficient self-stabilizing algorithm for maximal k-packing, in A.K. Datta and M. Gradinariu (Eds), Symposium on Self-Stabilizing Systems, Springer, Berlin/Heidelberg, pp. 428–439.10.1007/978-3-540-49823-0_30
  24. Mjelde, M. (2004). k-Packing and k-Domination on Tree Graphs, Master’s thesis, University of Bergen, Bergen.
  25. Newman, M.E.J. (2002). Handbook of Graphs and Networks, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, DOI: 10.1002/3527602755.10.1002/3527602755
  26. Nogueira, B., Pinheiro, R.G. and Subramanian, A. (2018). A hybrid iterated local search heuristic for the maximum weight independent set problem, Optimization Letters12(3): 567–583.10.1007/s11590-017-1128-7
  27. Shi, Z. (2012). A self-stabilizing algorithm to maximal 2-packing with improved complexity, Information Processing Letters112(13): 525–531.10.1016/j.ipl.2012.03.018
  28. Soto, J.G., Leanos, J., Ríos-Castro, L. and Rivera, L. (2018). The packing number of the double vertex graph of the path graph, Discrete Applied Mathematics247: 327–340.10.1016/j.dam.2018.03.085
  29. Trejo-Sánchez, J. A., Vela-Navarro, A., Flores-Lamas, A., López-Martínez, J.L., Bermejo-Sabbagh, C., Cuevas-Cuevas, N.L. and Toral-Cruz, H. (2018). Fast random cactus graph generation, in M. Torres et al. (Eds), International Conference on Supercomputing in Mexico, Springer, Cham, pp. 129–136.
  30. Trejo-Sánchez, J.A. and Fernández-Zepeda, J.A. (2012). A self-stabilizing algorithm for the maximal 2-packing in a cactus graph, 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), Shanghai, China, pp. 863–871.
  31. Trejo-Sánchez, J.A. and Fernández-Zepeda, J.A. (2014). Distributed algorithm for the maximal 2-packing in geometric outerplanar graphs, Journal of Parallel and Distributed Computing74(3): 2193–2202.10.1016/j.jpdc.2013.12.002
  32. Trejo-Sánchez, J.A., Fernández-Zepeda, J.A. and Ramírez-Pacheco, J.C. (2017). A self-stabilizing algorithm for a maximal 2-packing in a cactus graph under any scheduler, International Journal of Foundations of Computer Science28(08): 1021–1045.10.1142/S012905411750037X
  33. Turau, V. (2012). Efficient transformation of distance-2 self-stabilizing algorithms, Journal of Parallel and Distributed Computing72(4): 603–612.10.1016/j.jpdc.2011.12.008
DOI: https://doi.org/10.34768/amcs-2020-0014 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 173 - 184
Submitted on: Feb 1, 2019
Accepted on: Sep 7, 2019
Published on: Apr 3, 2020
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Joel Antonio Trejo-Sánchez, Daniel Fajardo-Delgado, J. Octavio Gutierrez-Garcia, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.