Have a personal or library account? Click to login
A Quaternion Clustering Framework Cover

References

  1. Abhayasinghe, N. and Murray, I. (2014). Human gait phase recognition based on thigh movement computed using imus, 9th IEEE International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Singapore, pp. 1–4.
  2. Austin, S.B., Melly, S.J., Sanchez, B.N., Patel, A., Buka, S. and Gortmaker, S.L. (2005). Clustering of fast-food restaurants around schools: A novel application of spatial statistics to the study of food environments, American Journal of Public Health95(9): 1575–1581.10.2105/AJPH.2004.056341
  3. Bandyopadhyay, S. and Maulik, U. (2002). Genetic clustering for automatic evolution of clusters and application to image classification, Pattern Recognition35(6): 1197–1208.10.1016/S0031-3203(01)00108-X
  4. Berkhin, P. (2006). A survey of clustering data mining techniques, in J. Kagan et al. (Eds), Grouping Multidimensional Data, Springer, Berlin/Heidelberg, pp. 25–71.10.1007/3-540-28349-8_2
  5. Caliński, T. and Harabasz, J. (1974). A dendrite method for cluster analysis, Communications in Statistics3(1): 1–27, DOI: 10.1080/03610927408827101.10.1080/03610927408827101
  6. Cantador, I. and Castells, P. (2006). Multilayered semantic social network modeling by ontology-based user profiles clustering: Application to collaborative filtering, in S. Staab and V. Svwtek (Eds), Managing Knowledge in a Word of Networks, Springer, Berlin/Heidelberg, pp. 334–349.10.1007/11891451_30
  7. Chaturvedi, N.A., Sanyal, A.K. and McClamroch, N.H. (2011). Rigid-body attitude control, IEEE Control Systems31(3): 30–51.10.1109/MCS.2011.940459
  8. Creusot, C., Pears, N. and Austin, J. (2010). 3D face landmark labelling, Proceedings of the ACM Workshop on 3D Object Retrieval, Firenze, Italy, pp. 27–32.
  9. Davies, D.L. and Bouldin, D.W. (1979). A cluster separation measure, IEEE Transactions on Pattern Analysis and Machine Intelligence1(2): 224–227, DOI: 10.1109/TPAMI.1979.4766909.10.1109/TPAMI.1979.4766909
  10. Dunn, J.C. (1974). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, Journal of Cybernetics3(3): 32–57.10.1080/01969727308546046
  11. Ell, T.A. and Sangwine, S.J. (2007). Hypercomplex Fourier transforms of color images, IEEE Transactions on Image Processing16(1): 22–35.10.1109/TIP.2006.884955
  12. Gariel, M., Srivastava, A.N. and Feron, E. (2011). Trajectory clustering and an application to airspace monitoring, IEEE Transactions on Intelligent Transportation Systems12(4): 1511–1524.10.1109/TITS.2011.2160628
  13. Grubesic, T.H. (2006). On the application of fuzzy clustering for crime hot spot detection, Journal of Quantitative Criminology22(1): 77–105.10.1007/s10940-005-9003-6
  14. Han, J., Pei, J. and Kamber, M. (2011). Data Mining: Concepts and Techniques, Elsevier, Waltham, MA.
  15. Himberg, J., Hyvärinen, A. and Esposito, F. (2004). Validating the independent components of neuroimaging time series via clustering and visualization, Neuroimage22(3): 1214–1222.10.1016/j.neuroimage.2004.03.02715219593
  16. Huynh, D.Q. (2009). Metrics for 3D rotations: Comparison and analysis, Journal of Mathematical Imaging and Vision35(2): 155–164, DOI: 10.1007/s10851-009-0161-2.10.1007/s10851-009-0161-2
  17. Jabłoński, B. (2008a). Anisotropic filtering of multidimensional rotational trajectories as a generalization of 2D diffusion process, Multidimensional Systems and Signal Processing19(3): 379–399, DOI: 10.1007/s11045-008-0056-1.10.1007/s11045-008-0056-1
  18. Jabłoński, B. (2008b). Filtration of Images and Spatial Trajectories Using Partial Differential Equations,EXIT,Warsaw, (in Polish).
  19. Jabłoński, B. (2011). Application of quaternion scale space approach for motion processing, in R.S. Choraś (Ed.), Image Processing and Communications Challenges 3, Springer, Berlin/Heidelberg, pp. 141–148, DOI: 10.1007/978-3-642-23154-4_16.10.1007/978-3-642-23154-4_16
  20. Jabłoński, B. (2012). Quaternion dynamic time warping, IEEE Transactions on Signal Processing60(3): 1174–1183.10.1109/TSP.2011.2177832
  21. Johnson, M. (2003). Exploiting Quaternions to Support Expressive Interactive Character Motion, PhD thesis, MIT, Cambridge, MA.
  22. Koster, K. and Spann, M. (2000). MIR: An approach to robust clustering-application to range image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence22(5): 430–444.10.1109/34.857001
  23. Liao, T.W. (2005). Clustering of time series data—a survey, Pattern Recognition38(11): 1857–1874.10.1016/j.patcog.2005.01.025
  24. Loots, M.T., Bekker, A., Arashi, M. and Roux, J.J. (2013). On the real representation of quaternion random variables, Statistics47(6): 1224–1240, DOI: 10.1080/02331888.2012.695376.10.1080/02331888.2012.695376
  25. Markley, F.L., Cheng, Y., Crassidis, J.L. and Oshman, Y. (2007). Averaging quaternions, Journal of Guidance, Control, and Dynamics30(4): 1193–1197.10.2514/1.28949
  26. Maulik, U. and Bandyopadhyay, S. (2002). Performance evaluation of some clustering algorithms and validity indices, IEEE Transactions on Pattern Analysis and Machine Intelligence24(12): 1650–1654.10.1109/TPAMI.2002.1114856
  27. Pei, S.-C. and Cheng, C.-M. (1999). Color image processing by using binary quaternion-moment-preserving thresholding technique, IEEE Transactions on Image Processing8(5): 614–628.10.1109/83.76031018267478
  28. Piórek, M. (2018). Analysis of Chaotic Behavior in Non-linear Dynamical Systems, Springer, Cham.10.1007/978-3-319-94887-4
  29. Reumerman, H.-J., Roggero, M. and Ruffini, M. (2005). The application-based clustering concept and requirements for intervehicle networks, IEEE Communications Magazine43(4): 108–113.10.1109/MCOM.2005.1421913
  30. Risojević, V. and Babić, Z. (2013). Unsupervised learning of quaternion features for image classification, 11th International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services (TELSIKS), Serbia, Nis, Vol. 1, pp. 345–348.
  31. Shi, L. (2005). Exploration in Quaternion Colour, PhD thesis, Simon Fraser University, Burnaby.
  32. Shi, L. and Funt, B. (2007). Quaternion color texture segmentation, Computer Vision and Image Understanding107(1): 88–96.10.1016/j.cviu.2006.11.014
  33. Wu, Z. and Leahy, R. (1993). An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence15(11): 1101–1113.10.1109/34.244673
  34. Zhou, F., De la Torre, F. and Hodgins, J.K. (2008). Aligned cluster analysis for temporal segmentation of human motion, 8th IEEE International Conference on Automatic Face & Gesture Recognition, FG’08, Amsterdam, The Netherlands, pp. 1–7.
DOI: https://doi.org/10.34768/amcs-2020-0011 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 133 - 147
Submitted on: Aug 4, 2018
Accepted on: Jul 29, 2019
Published on: Apr 3, 2020
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Michał Piórek, Bartosz Jabłoński, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.