Have a personal or library account? Click to login
Anti–Periodic Solutions for Clifford–Valued High–Order Hopfield Neural Networks with State–Dependent and Leakage Delays Cover

Anti–Periodic Solutions for Clifford–Valued High–Order Hopfield Neural Networks with State–Dependent and Leakage Delays

By: Nina Huo,  Bing Li and  Yongkun Li  
Open Access
|Apr 2020

References

  1. Alimi, A.M., Aouiti, C., Chérif, F., Dridi, F. and M’hamdi, M.S. (2018). Dynamics and oscillations of generalized high-order Hopfield neural networks with mixed delays, Neurocomputing321: 274–295.10.1016/j.neucom.2018.01.061
  2. Amster, P. (2013). Topological Methods in the Study of Boundary Valued Problems, Springer, New York, NY.10.1007/978-1-4614-8893-4
  3. Aouiti, C. (2018). Oscillation of impulsive neutral delay generalized high-order Hopfield neural networks, Neural Computing and Applications29(9): 477–495.10.1007/s00521-016-2558-3
  4. Aouiti, C., Coirault, P., Miaadi, F. and Moulay, E. (2017). Finite time boundedness of neutral high-order Hopfield neural networks with time delay in the leakage term and mixed time delays, Neurocomputing260: 378–392.10.1016/j.neucom.2017.04.048
  5. Bayro-Corrochano, E. and Scheuermann, G. (2010). Geometric Algebra Computing, in Engineering and Computer Science, Springer, London.10.1007/978-1-84996-108-0
  6. Brackx, F., Delanghe, R. and Sommen, F. (1982). Clifford Analysis, Pitman Books Limited, London.
  7. Buchholz, S. (2005). A theory of Neural Computation with Clifford Algebras, PhD thesis, University of Kiel, Kiel.
  8. Buchholz, S., Tachibana, K. and Hitzer, E.M. (2007). Optimal learning rates for Clifford neurons, in J.M. de Sá et al. (Eds), Artificial Neural Networks, Springer, Berlin/Heidelberg, pp. 864–873.10.1007/978-3-540-74690-4_88
  9. Buchholz, S. and Sommer, G. (2008). On Clifford neurons and Clifford multilayer perceptrons, Neural Networks21(7): 925–935.10.1016/j.neunet.2008.03.00418514482
  10. Corrochano, E.B., Buchholz, S. and Sommer, G. (1996). Selforganizing Clifford neural network, IEEE International Conference on Neural Networks, Washington, DC, USA, Vol. 1, pp. 120–125.
  11. Şaylı, M. and Yılmaz, E. (2017). Anti-periodic solutions for state-dependent impulsive recurrent neural networks with time-varying and continuously distributed delays, Annals of Operations Research258(1): 159–185.10.1007/s10479-016-2192-6
  12. Dorst, L., Fontijne, D. and Mann, S. (2007). Geometric Algebra for Computer Science: An Object-oriented Approach to Geometry, Morgan Kaufmann, Burlington, VA, pp. 609–612.
  13. He, Y., Guoping, L. and David, R. (2007). New delay-dependent stability criteria for neural networks with time-varying delay, IEEE Transactions on Neural Networks18(1): 310–314.10.1109/TNN.2006.88837317278483
  14. Hitzer, E., Nitta, T. and Kuroe, Y. (2013). Applications of Clifford’s geometric algebra, Advances in Applied Clifford Algebras23(2): 377–404.10.1007/s00006-013-0378-4
  15. Hu, J. and Wang, J. (2012). Global stability of complex-valued recurrent neural networks with time-delays, IEEE Transactions on Neural Networks and Learning Systems23(6): 853–865.10.1109/TNNLS.2012.219502824806758
  16. Kan, Y., Lu, J., Qiu, J. and Kurths, J. (2019). Exponential synchronization of time-varying delayed complex-valued neural networks under hybrid impulsive controllers, Neural Networks114: 157–163.10.1016/j.neunet.2019.02.00630974391
  17. Ke, Y. and Miao, C. (2017). Anti-periodic solutions of inertial neural networks with time delays, Neural Processing Letters45(2): 523–538.10.1007/s11063-016-9540-z
  18. Kuroe, Y. (2011). Models of Clifford recurrent neural networks and their dynamics, International Joint Conference on Neural Networks, San Jose, CA, USA, Vol. 3, pp. 1035–1041.
  19. Li, Y., Meng, X. and Xiong, L. (2017). Pseudo almost periodic solutions for neutral type high-order Hopfield neural networks with mixed time-varying delays and leakage delays on time scales, International Journal of Machine Learning and Cybernetics8(6): 1915–1927.10.1007/s13042-016-0570-7
  20. Li, Y. and Qin, J. (2018). Existence and global exponential stability of periodic solutions for quaternion-valued cellular neural networks with time-varying delays, Neuro-computing292: 91–103.10.1016/j.neucom.2018.02.077
  21. Li, Y., Qin, J. and Li, B. (2019a). Anti-periodic solutions for quaternion-valued high-order Hopfield neural networks with time-varying delays, Neural Processing Letters49(3): 1217–1237.10.1007/s11063-018-9867-8
  22. Li, Y., Qin, J. and Li, B. (2019b). Existence and global exponential stability of anti-periodic solutions for delayed quaternion-valued cellular neural networks with impulsive effects, Mathematical Methods in the Applied Sciences42(1): 5–23.10.1002/mma.5318
  23. Li, Y. and Wang, C. (2013). Existence and global exponential stability of equilibrium for discrete-time fuzzy BAM neural networks with variable delays and impulses, Fuzzy Sets and Systems217: 62–79.10.1016/j.fss.2012.11.009
  24. Li, Y., Wang, H. and Meng, X. (2019c). Almost automorphic synchronization of quaternion-valued high-order Hopfield neural networks with time-varying and distributed delays, IMA Journal of Mathematical Control and Information36(3): 983–1013.10.1093/imamci/dny015
  25. Li, Y. and Yang, L. (2014). Almost automorphic solution for neutral type high-order Hopfield neural networks with delays in leakage terms on time scales, Applied Mathematics and Computation242: 679–693.10.1016/j.amc.2014.06.052
  26. Liu, Y., Xu, P., Lu, J. and Liang, J. (2016). Global stability of Clifford-valued recurrent neural networks with time delays, Nonlinear Dynamics84(2): 767–777.10.1007/s11071-015-2526-y
  27. Liu, Y., Zhang, D., Lou, J., Lu, J. and Cao, J. (2018). Stability analysis of quaternion-valued neural networks: Decomposition and direct approaches, IEEE Transactions on Neural Networks and Learning Systems29(9): 4201–4211.10.1109/TNNLS.2017.275569729989971
  28. Liu, Y., Zheng, Y., Lu, J., Cao, J. and Rutkowski, L. (2020). Constrained quaternion-variable convex optimization: A quaternion-valued recurrent neural network approach, IEEE Transactions on Neural Networks and Learning Systems31(3): 1022–1035, DOI: 10.1109/TNNLS.2019.2916597.10.1109/TNNLS.2019.291659731247564
  29. Lou, X. and Cui, B. (2007). Novel global stability criteria for high-order Hopfield-type neural networks with time-varying delays, Journal of Mathematical Analysis and Applications330(1): 144–158.10.1016/j.jmaa.2006.07.058
  30. Ou, C. (2008). Anti-periodic solutions for high-order Hopfield neural networks, Computers & Mathematics with Applications56(7): 1838–1844.10.1016/j.camwa.2008.04.029
  31. Pearson, J. and Bisset, D. (1992). Back propagation in a Clifford algebra, in I. Aleksander and J. Taylor (Eds), Artificial Neural Networks, North-Holland, Amsterdam, pp. 413–416.
  32. Pearson, J. and Bisset, D. (2007). Neural networks in the Clifford domain, IEEE International Conference on Neural Networks, Orlando, FL, USA, Vol. 3, pp. 1465–1469.
  33. Rivera-Rovelo, J. and Bayro-Corrochano, E. (2006). Medical image segmentation using a self-organizing neural network and Clifford geometric algebra, International Joint Conference on Neural Networks, Vancouver, Canada, pp. 3538–3545.
  34. Sakthivel, R., Raja, R. and Anthoni, S. (2013). Exponential stability for delayed stochastic bidirectional associative memory neural networks with Markovian jumping and impulses, Journal of Optimization Theory and Applications150(1): 166–187.10.1007/s10957-011-9808-4
  35. Selvaraj, P., Sakthivel, R. and Kwon, O. (2018). Finite-time synchronization of stochastic coupled neural networks subject to Markovian switching and input saturation, Neural Networks105: 154–165.10.1016/j.neunet.2018.05.00429886328
  36. Shi, P. and Dong, L. (2010). Existence and exponential stability of anti-periodic solutions of Hopfield neural networks with impulses, Applied Mathematics and Computation216(2): 623–630.10.1016/j.amc.2010.01.095
  37. Wang, Z., Cao, J., Cai, Z. and Huang, L. (2019). Periodicity and finite-time periodic synchronization of discontinuous complex-valued neural networks, Neural Networks119: 249–260.10.1016/j.neunet.2019.08.02131472291
  38. Xiang, H., Yan, K. and Wang, B. (2006). Existence and global exponential stability of periodic solution for delayed high-order Hopfield-type neural networks, Physics Letters A352(4–5): 341–349.10.1016/j.physleta.2005.12.014
  39. Xu, B., Liu, X. and Liao, X. (2003). Global asymptotic stability of high-order Hopfield type neural networks with time delays, Computers and Mathematics with Applications45(10–11): 1729–1737.10.1016/S0898-1221(03)00151-2
  40. Xu, B., Liu, X. and Liao, X. (2006). Global exponential stability of high order Hopfield type neural networks, Applied Mathematics and Computation174(1): 98–116.10.1016/j.amc.2005.03.020
  41. Xu, C. and Li, P. (2017). Pseudo almost periodic solutions for high-order Hopfield neural networks with time-varying leakage delays, Neural Processing Letters46(1): 41–58.10.1007/s11063-016-9573-3
  42. Zhao, L., Li, Y. and Li, B. (2018). Weighted pseudo-almost automorphic solutions of high-order Hopfield neural networks with neutral distributed delays, Neural Computing and Applications29(7): 513–527.10.1007/s00521-016-2553-8
DOI: https://doi.org/10.34768/amcs-2020-0007 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 83 - 98
Submitted on: Mar 14, 2019
Accepted on: Oct 18, 2019
Published on: Apr 3, 2020
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Nina Huo, Bing Li, Yongkun Li, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.