Have a personal or library account? Click to login
Nonlinear Model Predictive Control for Processes with Complex Dynamics: A Parameterisation Approach Using Laguerre Functions Cover

Nonlinear Model Predictive Control for Processes with Complex Dynamics: A Parameterisation Approach Using Laguerre Functions

Open Access
|Apr 2020

References

  1. Bemporad, A., Morari, M., Dua, V. and Pistikopoulos, E. (2002). The explicit linear quadratic regulator for constrained systems, Automatica38(1): 3–20.10.1016/S0005-1098(01)00174-1
  2. Bosschaerts, W., Van Renterghem, T., Hasan, O.A. and Limam, K. (2017). Development of a model based predictive control system for heating buildings, Energy Procedia122(1): 519–528.10.1016/j.egypro.2017.03.1110
  3. Chaber, P. and Ławryńczuk, M. (2019). Fast analytical model predictive controllers and their implementation for STM32 ARM microcontroller, IEEE Transactions on Industrial Informatics15(8): 4580–45900.10.1109/TII.2019.2893122
  4. Clarke, D.W., Mohtadi, C. and Tuffs, P.S. (1987). Generalized predictive control. Part I: The basic algorithm, Automatica23(2): 137–148.
  5. Falconí, G.P., Angelov, J. and Holzapfel, F. (2018). Adaptive fault-tolerant position control of a hexacopter subject to an unknown motor failure, International Journal of Applied Mathematics and Computer Science28(2): 309–321, DOI: 10.2478/amcs-2018-0022.10.2478/amcs-2018-0022
  6. Greblicki, W. (2010). Nonparametric input density-free estimation of the nonlinearity in Wiener systems, IEEE Transactions on Information Theory56(7): 3575–3580.10.1109/TIT.2010.2048461
  7. Gutiérrez-Urquídez, R.C., Valencia-Palomo, G., Rodríguez-Elias, O.M. and Trujillo, L. (2015). Systematic selection of tuning parameters for efficient predictive controllers using a multiobjective evolutionary algorithm, Applied Soft Computing31(6): 326–338.10.1016/j.asoc.2015.02.033
  8. Harrabi, N., Kharrat, M., Aitouche, A. and Souissi, M. (2018). Control strategies for the grid side converter in a wind generation system based on a fuzzy approach, International Journal of Applied Mathematics and Computer Science28(2): 323–333, DOI: 10.2478/amcs-2018-0023.10.2478/amcs-2018-0023
  9. Jama, M., Wahyudie, A. and Noura, H. (2018). Robust predictive control for heaving wave energy converters, Control Engineering Practice77(1): 138–149.10.1016/j.conengprac.2018.05.010
  10. Janczak, A. and Korbicz, J. (2019). Two-stage instrumental variables identification of polynomial Wiener systems with invertible nonlinearities, International Journal of Applied Mathematics and Computer Science29(3): 571–580, DOI: 10.2478/amcs-2019-0042.10.2478/amcs-2019-0042
  11. Karimi Pour, F., Puig, V. and Ocampo-Martinez, C. (2018). Multi-layer health-aware economic predictive control of a pasteurization pilot plant, International Journal of Applied Mathematics and Computer Science28(1): 97–110, DOI: 10.2478/amcs-2018-0007.10.2478/amcs-2018-0007
  12. Khan, B. and Rossiter, J. A. (2013). Alternative parameterisation within predictive control: A systematic selection, International Journal of Control86(8): 1397–1409.10.1080/00207179.2013.774462
  13. Kim, J., Jung, Y. and Bang, H. (2018). Linear time-varying model predictive control of magnetically actuated satellites in elliptic orbits, Acta Astronautica151(1): 791 – 804.10.1016/j.actaastro.2018.07.029
  14. Lasheen, A., Saad, M.S., Emara, H.M. and Elshafei, A.L. (2017). Continuous-time tube-based explicit model predictive control for collective pitching of wind turbine, Energy118(1): 1222–1233.10.1016/j.energy.2016.11.002
  15. Li, Y., Wang, H. and Meng, X. (2019). Almost periodic synchronization of fuzzy celluar neural networks with time-varying delays via state-feedback and impulsive control, International Journal of Applied Mathematics and Computer Science29(2): 337–349, DOI: 10.2478/amcs-2019-0025.10.2478/amcs-2019-0025
  16. Ligthart, J.A.J., Poksawat, P., Wang, L. and Nijmeijer, H. (2017). Experimentally validated model predictive controller for a hexacopter, IFAC-PapersOnLine50(1): 4076–4081.10.1016/j.ifacol.2017.08.791
  17. Ławryńczuk, M. (2014). Computationally Efficient Model Predictive Control Algorithms: A Neural Network Approach, Springer, Cham.10.1007/978-3-319-04229-9
  18. Maciejowski, J. (2002). Predictive Control with Constraints, Prentice Hall, Harlow.
  19. Mzyk, G. (2014). Combined Parametric-Nonparametric Identification of Block-Oriented Systems, Lecture Notes in Control and Information Sciences, Vol. 454, Springer Verlag, Berlin.
  20. Oliveira, G.H.C., da Rosa, A., Campello, R.J.G.B., Machado, J.B. and Amaral, W.C. (2011). An introduction to models based on Laguerre, Kautz and other related orthonormal functions. Part I: Linear and uncertain models, International Journal of Modelling, Identification and Control14(1/2): 121–132.
  21. Oliveira, G.H.C., da Rosa, A., Campello, R.J.G.B., Machado, J.B. and Amaral, W.C. (2012). An introduction to models based on Laguerre, Kautz and other related orthonormal functions. Part II: Non-linear models, International Journal of Modelling, Identification and Control16(1): 1–14.
  22. Pazera, M., Buciakowski, M. and Witczak, M. (2018). Robust multiple sensor fault-tolerant control for dynamic non-linear systems: Application to the aerodynamical twin-rotor system, International Journal of Applied Mathematics and Computer Science28(2): 297–308, DOI: 10.2478/amcs-2018-0021.10.2478/amcs-2018-0021
  23. Richalet, J. and O’Donovan, D. (2009). Predictive Functional Control: Principles and Industrial Applications, Springer, London.10.1007/978-1-84882-493-5
  24. Takács, G., Batista, G., Gulan, M. and Rohal’-Ilkiv, B. (2016). Embedded explicit model predictive vibration control, Mechatronics36(1): 54–62.10.1016/j.mechatronics.2016.04.008
  25. Tatjewski, P. (2007). Advanced Control of Industrial Processes, Structures and Algorithms, Springer, London.
  26. van Donkelaar, E.T., Bosgra, O.H. and Van den Hof, P.M.J. (1999). Model predictive control with generalized input parametrization, Proceedings of the European Control Conference, ECC 1999, Karlsruhe, Germany, pp. 443–454, paper F0599.
  27. Wahlberg, B. (1991). System identification using Laguerre models, IEEE Transactions on Automatic Control36(5): 551–562.10.1109/9.76361
  28. Wang, L. (2001). Continuous time model predictive control design using orthonormal functions, International Journal of Control74(16): 1588–1600.10.1080/00207170110082218
  29. Wang, L. (2004). Discrete model predictive controller design using Laguerre functions, Journal of Process Control14(2): 131–142.10.1016/S0959-1524(03)00028-3
  30. Wang, Y. and Boyd, S. (2010). Fast model predictive control using online optimization, IEEE Transactions on Control Systems Technology18(2): 267–278.10.1109/TCST.2009.2017934
  31. Witkowska, A. and Śmierzchalski, R. (2018). Adaptive backstepping tracking control for an over-actuated DP marine vessel with inertia uncertainties, International Journal of Applied Mathematics and Computer Science28(4): 679–693, DOI: 10.2478/amcs-2018-0052.10.2478/amcs-2018-0052
  32. Zheng, Y., Zhou, J., Xu, Y., Zhang, Y. and Qian, Z. (2017). A distributed model predictive control based load frequency control scheme for multi-area interconnected power system using discrete-time Laguerre functions, ISA Transactions68(1): 127–140.10.1016/j.isatra.2017.03.00928343709
DOI: https://doi.org/10.34768/amcs-2020-0003 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 35 - 46
Submitted on: Jun 14, 2019
Accepted on: Oct 18, 2019
Published on: Apr 3, 2020
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Maciej Ławryńczuk, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.