Have a personal or library account? Click to login
An Information Based Approach to Stochastic Control Problems Cover
By: Piotr Bania  
Open Access
|Apr 2020

References

  1. Alpcan, T., Shames, I., Cantoni, M. and Nair, G. (2015). An information-based learning approach to dual control, IEEE Transactions on Neural Networks and Learning Systems26(11): 2736–2748.10.1109/TNNLS.2015.239212225730828
  2. Alspach, D. and Sorenson, H. (1972). Nonlinear Bayesian estimation using Gaussian sum approximations, IEEE Transactions on Automatic Control17(4): 439–448.10.1109/TAC.1972.1100034
  3. Åström, K. and Wittenmark, B. (1995). Adaptive Control, Second Edition, Dover Publications, NewYork, NY.
  4. Banek, T. (2010). Incremental value of information for discrete-time partially observed stochastic systems, Control and Cybernetics39(3): 769–781.
  5. Bania, P. (2017). Simple example of dual control problem with almost analytical solution, Proceedings of the 19th Polish Control Conference, Krakow, Poland, pp. 55–64, DOI: 10.1007/978-3-319-60699-6-7.
  6. Bania, P. (2018). Example for equivalence of dual and information based optimal control, International Journal of Control38(5): 787–803, DOI: 10.1080/00207179.2018.1436775.10.1080/00207179.2018.1436775
  7. Bania, P. (2019). Bayesian input design for linear dynamical model discrimination, Entropy21(4): 1–13, DOI: 10.3390/e21040351.10.3390/e21040351751483533267065
  8. Bania, P. and Baranowski, J. (2016). Field Kalman filter and its approximation, 55th IEEE Conference on Decision and Control, Las Vegas, NV, USA, pp. 2875–2880, DOI: 10.1109/CDC.2016.7798697.10.1109/CDC.2016.7798697
  9. Bania, P. and Baranowski, J. (2017). Bayesian estimator of a faulty state: Logarithmic odds approach, 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, pp. 253–257, DOI: 10.1109/MMAR.2017.8046834.10.1109/MMAR.2017.8046834
  10. Baranowski, J., Bania, P., Prasad, I. and T., C. (2017). Bayesian fault detection and isolation using field Kalman filter, EURASIP Journal on Advances in Signal Processing79(1), DOI: 10.1186/s13634-017-0514-8.10.1186/s13634-017-0514-8
  11. BarShalom, Y. and Tse, E. (1976). Caution, probing, and the value of information in the control of uncertain systems, Annals of Economic and Social Measurement5(3): 323–337.
  12. Brechtel, S., Gindele, T. and Dillmann, R. (2013). Solving continuous POMDPs: Value iteration with incremental learning of an efficient space representation, Proceedings of the 30th International Conference on International Conference on Machine Learning, ICML’13, Atlanta, GA, USA, Vol. 28, pp. III–370–III–378.
  13. Byrd, R., Hansen, S., Nocedal, J. and Singer, Y. (2016). A stochastic quasi-Newton method for large-scale optimization, SIAM Journal on Optimization26(2): 1008–1031.10.1137/140954362
  14. Cover, T.M. and Thomas, J.A. (2006). Elements of Information Theory, Second Edition, John Wiley & Sons, Inc., Hoboken, NJ.
  15. Delvenne, J.C. and Sandberg, H. (2013). Towards a thermodynamics of control: Entropy, energy and Kalman filtering, 52nd IEEE Conference on Decision and Control, Florence, Italy, pp. 3109–3114.
  16. Dolgov, M. (2017). Approximate Stochastic Optimal Control of Smooth Nonlinear Systems and Piecewise Linear Systems, PhD thesis, Karlsruhe Institute of Technology, Karlsruhe.
  17. Feldbaum, A.A. (1965). Optimal Control Systems, Academic Press, New York, NY.
  18. Filatov, N.M. and Unbehauen, H. (2004). Adaptive Dual Control: Theory and Applications, Springer-Verlag, Berlin/Heidelberg.10.1007/b96083
  19. Hijab, O. (1984). Entropy and dual control, 23rd Conference on Decision and Control, Las Vegas, NV, USA, pp. 45–50.
  20. Huang, C., Ho, D.W.C., Lu, J. and Kurths, J. (2012). Partial synchronization in stochastic dynamical networks with switching communication channels, Chaos: An Interdisciplinary Journal of Nonlinear Science22(2): 023108, DOI: 10.1063/1.3702576.10.1063/1.370257622757515
  21. Jiang, H. (2017). Uniform convergence rates for kernel density estimation, Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, pp. 1694–1703.
  22. Joe, H. (1989). Estimation of entropy and other functionals of a multivariate density, Annals of the Institute of Statistical Mathematics41(4): 683–697.10.1007/BF00057735
  23. Kolchinsky, A. and Tracey, B.D. (2017). Estimating mixture entropy with pairwise distances, Entropy19(361): 1–17.10.3390/e19070361
  24. Korbicz, J., Koscielny, J.M., Kowalczuk, Z. and Cholewa, W. (2004). Fault Diagnosis: Models, Artificial Intelligence, Applications, Springer-Verlag, Berlin/Heidelberg.10.1007/978-3-642-18615-8
  25. Kozlowski, E. and Banek, T. (2011). Active learning in discrete time stochastic systems, in J. Jozefczyk and D. Orski (Eds), Knowledge-Based Intelligent System Advancements: Systemic and Cybernetic Approaches, Information Science References, New York, NY, pp. 350–371.
  26. Mitter, S.K. and Newton, N.J. (2005). Information and entropy flow in the Kalman–Bucy filter, Journal of Statistical Physics118(1): 145–176.10.1007/s10955-004-8781-9
  27. Porta, J.M., Vlassis, N., Spaan, M.T. and Poupart, P. (2006). Point-based value iteration for continuous POMDPs, Journal of Machine Learning Research7(1): 2329–2367.
  28. Sagawa, T. and Ueda, M. (2013). Role of mutual information in entropy production under information exchanges, New Journal of Physics15(125012): 2–23.10.1088/1367-2630/15/12/125012
  29. Saridis, G.N. (1988). Entropy formulation of optimal and adaptive control, IEEE Transactions on Automatic Control33(8): 713–721.10.1109/9.1287
  30. Särkä, S. (2013). Bayesian Filtering and Smoothing, Cambridge University Press, New York, NY.10.1017/CBO9781139344203
  31. Taticonda, S. and Mitter, S.K. (2004). Control under communication constraints, IEEE Transactions on Automatic Control49(7): 1056–1068.10.1109/TAC.2004.831187
  32. Thrun, S. (2000). Monte Carlo POMDPs, in S. Solla et al. (Eds), Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA, pp. 1064–1070.
  33. Touchette, H. (2000). Information-theoretic Aspects in the Control of Dynamical Systems Master’s thesis, MIT, Cambridge, MA, https://pdfs.semanticscholar.org/c915/088f514d937f5d1c666221c95d731532101e.pdf.
  34. Touchette, H. and Lloyd, S. (2000). Information-theoretic limits of control, Physical Review Letters84(6): 1156–1159.10.1103/PhysRevLett.84.115611017467
  35. Touchette, H. and Lloyd, S. (2004). Information-theoretic approach to the study of control systems, Physica A331(1): 140–172.10.1016/j.physa.2003.09.007
  36. Tsai, Y.A., Casiello, F.A. and Loparo, K.A. (1992). Discrete-time entropy formulation of optimal and adaptive control problems, IEEE Transactions on Automatic Control37(7): 1083–1088.10.1109/9.148379
  37. Tse, E. (1974). Adaptive dual control methods, Annals of Economic and Social Measurement3(1): 65–82.
  38. Uciński, D. (2004). Optimal Measurement Methods for Distributed Parameter System Identification, CRC Press, Boca Raton, FL.10.1201/9780203026786
  39. Zabczyk, J. (1996). Chance and Decision. Stochastic Control in Discrete Time, Quaderni Scuola Normale di Pisa, Pisa.
  40. Zhao, D., Liu, J., Wu, R., Cheng, D. and Tang, X. (2019). An active exploration method for data efficient reinforcement learning, International Journal of Applied Mathematics and Computer Science29(2): 351–362, DOI: 10.2478/amcs-2019-0026.10.2478/amcs-2019-0026
DOI: https://doi.org/10.34768/amcs-2020-0002 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 23 - 34
Submitted on: Mar 9, 2019
Accepted on: Oct 31, 2019
Published on: Apr 3, 2020
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Piotr Bania, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.