Have a personal or library account? Click to login
Input Reconstruction by Feedback Control for the Schlögl and FitzHugh–Nagumo Equations Cover

Input Reconstruction by Feedback Control for the Schlögl and FitzHugh–Nagumo Equations

Open Access
|Apr 2020

References

  1. Avdonin, S. and Bell, J. (2015). Determining a distributed conductance parameter for a neuronal cable model defined on a tree graph, Journal of Inverse Problems and Imaging9(3): 645–659.10.3934/ipi.2015.9.645
  2. Banks, H.T. and Kunisch, K. (1989). Estimation Techniques for Distributed Parameter Systems, Birkhäuser, Boston, MA.10.1007/978-1-4612-3700-6
  3. Barbu, V. (1990). The inverse one phase Stefan problem, Differential Integral Equations3(2): 209–218.
  4. Breiten, T. and Kunisch, K. (2014). Riccati-based feedback control of the monodomain equations with the FitzHugh–Nagumo model, SIAM Journal of Control and Optimization52(6): 4057–4081.10.1137/140964552
  5. Buchholz, R., Engel, H., Kammann, E. and Tröltzsch, F. (2013). On the optimal control of the Schlögl-model, Computational Optimization and Application56(1): 153–185.10.1007/s10589-013-9550-y
  6. Casas, E., Ryll, C. and Tröltzsch, F. (2013). Sparse optimal control of the Schlögl and FitzHugh–Nagumo systems, Computational Methods in Applied Mathematics13(4): 415–442.10.1515/cmam-2013-0016
  7. Evans, L.C. (1998). Partial Differential Equations, American Mathematical Society, Providence, RI.
  8. Gugat, M. and Tröltzsch, F. (2015). Boundary feedback stabilization of the Schlögl system, Automatica51(C): 192–199.10.1016/j.automatica.2014.10.106
  9. Jackson, D.E. (1990). Existence and regularity for the FitzHugh–Nagumo equations with inhomogeneous boundary conditions, Nonlinear Analysis: Theory, Methods & Applications A: Theory and Methods14(3): 201–216.10.1016/0362-546X(90)90029-G
  10. Kabanikhin, S.I. (2011). Inverse and Ill-posed Problems, De Gruyter, Berlin.10.1515/9783110224016
  11. Krasovskii, N.N. and Subbotin, A.I. (1988). Game-Theoretical Control Problems, Springer Verlag, New York, NY/Berlin.10.1007/978-1-4612-3716-7
  12. Kryazhimskii, A.V., Osipov, Yu.S., (1995). Inverse Problems for Ordinary Differential Equations: Dynamical Solutions, Gordon and Breach, London.
  13. Lasiecka, I., Triggiani, R., and Yao, P.F. (1999). Inverse/observability estimates for second order hyperbolic equations with variable coefficients, Journal of Mathematical Analysis and Applications235(1): 13–57.10.1006/jmaa.1999.6348
  14. Lavrentiev, M.M., Romanov, V.G., and Shishatskii, S.P. (1980). Ill-posed Problems of Mathematical Physics and Analysis, Nauka, Novosibirsk, (in Russian).
  15. Le, M.H.L. (2019). Eine Methode der Steuerungs-Rekonstruktion bei semilinearen parabolischen Differentialgleichungen, Master thesis, Technische Universität Berlin, Berlin.
  16. Maksimov, V. (2002). Dynamical Inverse Problems of Distributed Systems, VSP, Utrecht/Boston, MA.10.1515/9783110944839
  17. Maksimov, V. (2009). On reconstruction of boundary controls in a parabolic equations, Advances in Differential Equations14(11–12): 1193–1211.
  18. Maksimov, V. (2016). Game control problem for a phase field equation, Journal Optimization Theory and Applications170(1): 294–307.10.1007/s10957-015-0721-0
  19. Maksimov, V. (2017). Some problems of guaranteed control of the Schlögl and FitzHugh–Nagumo systems, Evolution Equations and Control Theory6(4): 559–586.10.3934/eect.2017028
  20. Maksimov, V. and Mordukhovich, B.S. (2017). Feedback design of differential equations of reconstruction for second-order distributed systems, International Journal of Applied Mathematics and Computer Science27(3): 467–475, DOI: 10.1515/amcs-2017-0032.10.1515/amcs-2017-0032
  21. Maksimov, V. and Pandolfi, L. (2002). The problem of dynamical reconstruction of Dirichlet boundary control in semilinear hyperbolic equations, Journal of Inverse and Ill-Posed Problems8(4): 399–411.10.1515/jiip.2000.8.4.399
  22. Mordukhovich, B.S. (2008). Optimization and feedback design of state-constrained parabolic systems, Pacific Journal of Optimization4(3): 549–570
  23. Ryll, C., Löber, J., Martens, S., Engel, H., and Tröltzsch, F. (2016). Analytical, optimal, and sparse optimal control of traveling wave solutions to reaction-diffusion systems, in F. Schöll et al. (Eds.), Control and Self-Organizing Nonlinear Systems, Springer, Berlin, pp. 189–210.10.1007/978-3-319-28028-8_10
  24. Samarskii, A.A. (1971). Introduction to the Theory of Difference Schemes, Nauka, Moscow, (in Russian).
  25. Shitao, L. and Triggiani, R. (2013). Recovering damping and potential coefficients for an inverse non-homogeneous second-order hyperbolic problem via a localized Neumann boundary trace, Discrete and Continuous Dynamical Systems33(11&12): 5217–5252.10.3934/dcds.2013.33.5217
  26. Tikhonov, A.N. and Arsenin, V.Y. (1977). Solutions of Ill-posed Problems, V.H. Winston & Sons, Washington, DC.
DOI: https://doi.org/10.34768/amcs-2020-0001 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 5 - 22
Submitted on: May 24, 2019
Accepted on: Nov 30, 2019
Published on: Apr 3, 2020
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Vyacheslav Maksimov, Fredi Tröltzsch, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.