Have a personal or library account? Click to login
Advances in diagnosis and management of Pompe disease Cover

Advances in diagnosis and management of Pompe disease

Open Access
|Oct 2020

References

  1. Pompe JC. Over idiopathische hypertrophie van het hart. Vereenigingsverslag van het Genootschap ter bevordering van Natuur-, Genees- en Heelkunde te Amsterdam. Vergadering van de afdeling Geneeskunde, op woensdag 18 November 1931. Ned Tijdschr Geneeskd. 1932;76:304–11.
  2. Thurberg BL, Lynch Maloney C, Vaccaro C, Afonso K, Tsai AC, Bossen E, et al. Characterization of pre- and post-treatment pathology after enzyme replacement therapy for Pompe disease. Lab Invest. 2006;86(12):1208–20. doi: 10.1038/labinvest.3700484
  3. Hahn A, Schänzer A. Long-term outcome and unmet needs in infantile-onset Pompe disease. Ann Transl Med. 2019;7(13):283. doi: 10.21037/atm.2019.04.70
  4. van den Hout HM, Hop W, van Diggelen OP, Smeitink JA, Smit GP, Poll-The BT, et al. The natural course of infantile Pompe’s disease: 20 original cases compared with 133 cases from the literature. Pediatrics. 2003;112(2):332–40. doi: 10.1542/peds.112.2.332
  5. Güngör D, de Vries JM, Hop WC, Reuser AJ, van Doorn PA, van der Ploeg AT, et al. Survival and associated factors in 268 adults with Pompe disease prior to treatment with enzyme replacement therapy. Orphanet J Rare Dis. 2011;6:34. doi: 10.1186/1750-1172-6-34
  6. Hagemans ML, Winkel LP, Van Doorn PA, Hop WJ, Loonen MC, Reuser AJ, et al. Clinical manifestation and natural course of late-onset Pompe’s disease in 54 Dutch patients. Brain. 2005;128(Pt 3):671–7. doi: 10.1093/brain/awh384
  7. Lukacs Z, Nieves Cobos P, Wenninger S, Willis TA, Guglieri M, Roberts M, et al. Prevalence of Pompe disease in 3,076 patients with hyperCKemia and limb-girdle muscular weakness. Neurology. 2016;87(3):295–8. doi: 10.1212/WNL.0000000000002758
  8. Fukuhara Y, Fuji N, Yamazaki N, Hirakiyama A, Kamioka T, Seo JH, et al. A molecular analysis of the GAA gene and clinical spectrum in 38 patients with Pompe disease in Japan. Mol Genet Metab Rep. 2017;14:3–9. doi: 10.1016/j.ymgmr.2017.10.009
  9. Pompe disease GAA variant database. Available from: http://www.pompevariantdatabase.nl/pompe_mutations_list.php?orderby=aMut_ID1
  10. Goldstein JL, Young SP, Changela M, Dickerson GH, Zhang H, Dai J, et al. Screening for Pompe disease using a rapid dried blood spot method: experience of a clinical diagnostic laboratory. Muscle Nerve. 2009;40(1):32–6. doi: 10.1002/mus.21376
  11. Kishnani PS, Amartino HM, Lindberg C, Miller TM, Wilson A, Keutzer J. Methods of diagnosis of patients with Pompe disease: data from the Pompe Registry. Mol Genet Metab. 2014;113(1–2):84–91. doi: 10.1016/j.ymgme.2014.07.014
  12. Anderson G, Smith VV, Malone M, Sebire NJ. Blood film examination for vacuolated lymphocytes in the diagnosis of metabolic disorders; retrospective experience of more than 2,500 cases from a single centre. J Clin Pathol. 2005;58(12):1305–10. doi: 10.1136/jcp.2005.027045
  13. Pascarella A, Terracciano C, Farina O, Lombardi L, Esposito T, Napolitano F, et al. Vacuolated PAS-positive lymphocytes as an hallmark of Pompe disease and other myopathies related to impaired autophagy. J Cell Physiol. 2018;233(8):5829–37. doi: 10.1002/jcp.26365
  14. Manwaring V, Prunty H, Bainbridge K, Burke D, Finnegan N, Franses R, et al. Urine analysis of glucose tetrasaccharide by HPLC; a useful marker for the investigation of patients with Pompe and other glycogen storage diseases. J Inherit Metab Dis. 2012;35(2):311–6. doi: 10.1007/s10545-011-9360-2
  15. Rairikar MV, Case LE, Bailey LA, Kazi ZB, Desai AK, Berrier KL, et al. Insight into the phenotype of infants with Pompe disease identified by newborn screening with the common c.-32-13T>G “late-onset” GAA variant. Mol Genet Metab. 2017;122(3):99–107. doi: 10.1016/j.ymgme.2017.09.008
  16. Yang CF, Liu HC, Hsu TR, Tsai FC, Chiang SF, Chiang CC, et al. A large-scale nationwide newborn screening program for Pompe disease in Taiwan: towards effective diagnosis and treatment. Am J Med Genet A. 2014;164A(1):54–61. doi: 10.1002/ajmg.a.36197
  17. Kishnani PS, Goldenberg PC, DeArmey SL, Heller J, Benjamin D, Young S, et al. Cross-reactive immunologic material status afects treatment outcomes in Pompe disease infants. Mol Genet Metab. 2010;99(1):26–33. doi: 10.1016/j.ymgme.2009.08.003
  18. Bali DS, Goldstein JL, Banugaria S, Dai J, Mackey J, Rehder C, et al. Predicting cross-reactive immunological material (CRIM) status in Pompe disease using GAA mutations: lessons learned from 10 years of clinical laboratory testing experience. Am J Med Genet C Semin Med Genet. 2012;160C(1):40–9. doi: 10.1002/ajmg.c.31319
  19. Wang Z, Okamoto P, Keutzer J. A new assay for fast, reliable CRIM status determination in infantile-onset Pompe disease. Mol Genet Metab. 2014;111(2):92–100. doi: 10.1016/j.ymgme.2013.08.010
  20. Kishnani PS, Steiner RD, Bali D, Berger K, Byrne BJ, Case LE, et al. Pompe disease diagnosis and management guideline. Genet Med. 2006;8(5):267–88. doi: 10.1097/01.gim.0000218152.87434. f3. Erratum in: Genet Med. 2006 Jun;8(6):382. ACMG Work Group on Management of Pompe Disease [removed]; Case, Laura [corrected to Case, Laura E].
  21. Musumeci O, la Marca G, Spada M, Mondello S, Danesino C, Comi GP, et al.; Italian GSD II group. LOPED study: looking for an early diagnosis in a late-onset Pompe disease high-risk population. J Neurol Neurosurg Psychiatry. 2016;87(1):5–11. doi: 10.1136/jnnp-2014-310164
  22. Lai CJ, Hsu TR, Yang CF, Chen SJ, Chuang YC, Niu DM. Cognitive development in infantile-onset Pompe disease under very early enzyme replacement therapy. J Child Neurol. 2016;31(14):1617– 21. doi: 10.1177/0883073816665549
  23. Yang CF, Yang CC, Liao HC, Huang LY, Chiang CC, Ho HC, et al. Very early treatment for infantile-onset Pompe disease contributes to better outcomes. J Pediatr. 2016;169:174.e1–80.e1. doi: 10.1016/j.jpeds.2015.10.078
  24. Schoser B, Stewart A, Kanters S, Hamed A, Jansen J, Chan K, et al. Survival and long-term outcomes in late-onset Pompe disease following alglucosidase alfa treatment: a systematic review and meta-analysis. J Neurol. 2017;264(4):621–30. doi: 10.1007/s00415-016-8219-8
  25. Bodamer OA, Scott CR, Giugliani R; Pompe Disease Newborn Screening Working Group. Newborn screening for pompe disease. Pediatrics. 2017;140(Suppl 1):S4–13. doi: 10.1542/peds.2016-0280C
  26. Chien YH, Lee NC, Chen CA, Tsai FJ, Tsai WH, Shieh JY, et al. Long-term prognosis of patients with infantile-onset Pompe disease diagnosed by newborn screening and treated since birth. J Pediatr. 2015;166(4):985.e1-2–91.e1-2. doi: 10.1016/j.jpeds.2014.10.068
  27. Kronn DF, Day-Salvatore D, Hwu WL, Jones SA, Nakamura K, Okuyama T, et al. Management of confirmed newborn-screened patients with Pompe disease across the disease spectrum. Pediatrics. 2017;140(Suppl 1):S24–45. doi: 10.1542/peds.2016-0280E
  28. Kishnani PS, Hwu WL; Pompe Disease Newborn Screening Working Group. Introduction to the newborn screening, diagnosis, and treatment for Pompe disease guidance supplement. Pediatrics. 2017;140(Suppl 1):S1–3. doi: 10.1542/peds.2016-0280B
  29. Thomas R, Kermode AR. Enzyme enhancement therapeutics for lysosomal storage diseases: Current status and perspective. Mol Genet Metab. 2019;126(2):83–97. doi: 10.1016/j. ymgme.2018.11.011
  30. Van den Hout H, Reuser AJ, Vulto AG, Loonen MC, Cromme-Dijkhuis A, Van der Ploeg AT. Recombinant human alpha-glucosidase from rabbit milk in Pompe patients. Lancet. 2000;356(9227):397–8. doi: 10.1016/s0140-6736(00)02533-2
  31. Amalfitano A, Bengur AR, Morse RP, Majure JM, Case LE, Veerling DL, et al. Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: results of a phase I/II clinical trial. Genet Med. 2001;3(2):132–8. doi: 10.1038/gim200127
  32. Broomfield A, Fletcher J, Davison J, Finnegan N, Fenton M, Chikermane A, et al. Response of 33 UK patients with infantile-onset Pompe disease to enzyme replacement therapy. J Inherit Metab Dis. 2016;39(2):261–71. doi: 10.1007/s10545-015-9898-5
  33. van der Ploeg AT, Clemens PR, Corzo D, Escolar DM, Florence J, Groeneveld GJ, et al. A randomized study of alglucosidase alfa in late-onset Pompe’s disease. N Engl J Med. 2010;362(15):1396–406. doi: 10.1056/NEJMoa0909859
  34. Kuperus E, Kruijshaar ME, Wens SCA, de Vries JM, Favejee MM, van der Meijden JC, et al. Long-term benefit of enzyme replacement therapy in Pompe disease: a 5-year prospective study. Neurology. 2017;89(23):2365–73. doi: 10.1212/WNL.0000000000004711
  35. Kazi ZB, Desai AK, Berrier KL, Troxler RB, Wang RY, Abdul-Rahman OA, et al. Sustained immune tolerance induction in enzyme replacement therapy-treated CRIM-negative patients with infantile Pompe disease. JCI Insight. 2017;2(16):e94328. doi: 10.1172/jci.insight.94328
  36. Messinger YH, Mendelsohn NJ, Rhead W, Dimmock D, Hershkovitz E, Champion M, et al. Successful immune tolerance induction to enzyme replacement therapy in CRIM-negative infantile Pompe disease. Genet Med. 2012;14(1):135–42. doi: 10.1038/gim.2011.4
  37. Koeberl DD, Austin S, Case LE, Smith EC, Buckley AF, Young SP, et al. Adjunctive albuterol enhances the response to enzyme replacement therapy in late-onset Pompe disease. FASEB J. 2014;28(5):2171–6. doi: 10.1096/fj.13-241893
  38. Chien YH, Hwu WL, Lee NC, Tsai FJ, Koeberl DD, Tsai WH, et al. Albuterol as an adjunctive treatment to enzyme replacement therapy in infantile-onset Pompe disease. Mol Genet Metab Rep. 2017;11:31–5. doi: 10.1016/j.ymgmr.2017.04.004
  39. NIH. Clinical Trials Database. Available from: www.clinicaltrials.gov
  40. Puzzo F, Colella P, Biferi MG, Bali D, Paulk NK, Vidal P, et al. Rescue of Pompe disease in mice by AAV-mediated liver delivery of secretable acid α-glucosidase. Sci Transl Med. 2017;9(418):eaam6375. doi: 10.1126/scitranslmed.aam6375
  41. Kishnani PS, Koeberl DD. Liver depot gene therapy for Pompe disease. Ann Transl Med. 2019;7(13):288. doi: 10.21037/ atm.2019.05.02
  42. Ronzitti G, Collaud F, Laforet P, Mingozzi F. Progress and challenges of gene therapy for Pompe disease. Ann Transl Med. 2019;7(13):287. doi: 10.21037/atm.2019.04.67
  43. Swift G, Cleary M, Grunewald S, Lozano S, Ryan M, Davison J. Swallow prognosis and follow-up protocol in infantile onset Pompe disease. JIMD Rep. 2017;33:11–7. doi: 10.1007/8904_2016_576
  44. Figueroa-Bonaparte S, Llauger J, Segovia S, Belmonte I, Pedrosa I, Montiel E, et al. Quantitative muscle MRI to follow up late onset Pompe patients: a prospective study. Sci Rep. 2018;8(1):10898. doi: 10.1038/s41598-018-29170-7
  45. Tarallo A, Carissimo A, Gatto F, Nusco E, Toscano A, Musumeci O, et al. microRNAs as biomarkers in Pompe disease. Genet Med. 2019;21(3):591–600. doi: 10.1038/s41436-018-0103-8
  46. Carrasco-Rozas A, Fernández-Simón E, Lleixà MC, Belmonte I, Pedrosa-Hernandez I, Montiel-Morillo E, et al. Identification of serum microRNAs as potential biomarkers in Pompe disease. Ann Clin Transl Neurol. 2019;6(7):1214–24. doi: 10.1002/acn3.50800
  47. Schüller A, Wenninger S, Strigl-Pill N, Schoser B. Toward deconstructing the phenotype of late-onset Pompe disease. Am J Med Genet C Semin Med Genet. 2012;160C(1):80–88. doi: 10.1002/ ajmg.c.31322
  48. Chan J, Desai AK, Kazi ZB, Corey K, Austin S, Hobson-Webb LD, et al. The emerging phenotype of late-onset Pompe disease: a systematic literature review. Mol Genet Metab. 2017;120(3): 163–72. doi: 10.1016/j.ymgme.2016.12.004
  49. Mori M, Bailey LA, Estrada J, Rehder CW, Li JS, Rogers JG, et al. Severe cardiomyopathy as the isolated presenting feature in an adult with late-onset pompe disease: a case report. JIMD Rep. 2017;31:79–83. doi: 10.1007/8904_2016_563
  50. Bernstein DL, Bialer MG, Mehta L, Desnick RJ. Pompe disease: dramatic improvement in gastrointestinal function following enzyme replacement therapy. A report of three later-onset patients. Mol Genet Metab. 2010;101(2–3):130–3. doi: 10.1016/j.ymgme.2010.06.003.
  51. Ajay D, McNamara ER, Austin S, Wiener JS, Kishnani P. Lower urinary tract symptoms and incontinence in children with pompe disease. JIMD Rep. 2016;28:59–67. doi: 10.1007/8904_2015_492
  52. Guevara-Campos J, González-Guevara L, Cauli O. Skeletal alterations, developmental delay and new mutations in juvenile-onset Pompe disease. Neuromuscul Disord. 2019;29(3):192–7. doi: 10.1016/j.nmd.2018.11.013
  53. Hensel O, Hanisch F, Stock K, Stoevesandt D, Deschauer M, Müller T. Morphology and function of cerebral arteries in adults with Pompe disease. JIMD Rep. 2015;20:27–33. doi: 10.1007/8904_2014_385
  54. Quenardelle V, Bataillard M, Bazin D, Lannes B, Wolff V, Echaniz-Laguna A. Pompe disease presenting as an isolated generalized dilative arteriopathy with repeated brain and kidney infarcts. J Neurol. 2015;262(2):473–5. doi: 10.1007/s00415-014-7582-6
  55. Pena LD, Proia AD, Kishnani PS. Postmortem findings and clinical correlates in individuals with infantile-onset Pompe disease. JIMD Rep. 2015;23:45–54. doi: 10.1007/8904_2015_426
  56. Broomfield A, Fletcher J, Hensman P, Wright R, Prunty H, Pavaine J, et al. Rapidly progressive white matter involvement in early childhood: the expanding phenotype of infantile onset Pompe? JIMD Rep. 2018;39:55–62. doi: 10.1007/8904_2017_46
  57. van Capelle CI, Goedegebure A, Homans NC, Hoeve HL, Reuser AJ, van der Ploeg AT. Hearing loss in Pompe disease revisited: results from a study of 24 children. J Inherit Metab Dis. 2010;33(5):597–602. doi: 10.1007/s10545-010-9144-0
  58. Kamphoven JH, de Ruiter MM, Winkel LP, Van den Hout HM, Bijman J, De Zeeuw CI, et al. Hearing loss in infantile Pompe’s disease and determination of underlying pathology in the knockout mouse. Neurobiol Dis. 2004;16(1):14–20. doi: 10.1016/j. nbd.2003.12.018
  59. Ebbink BJ, Poelman E, Aarsen FK, Plug I, Régal L, Muentjes C, et al. Classic infantile Pompe patients approaching adulthood: a cohort study on consequences for the brain. Dev Med Child Neurol. 2018;60(6):579–86. doi: 10.1111/dmcn.13740
  60. Spiridigliozzi GA, Keeling LA, Stefanescu M, Li C, Austin S, Kishnani PS. Cognitive and academic outcomes in long-term survivors of infantile-onset Pompe disease: a longitudinal follow-up. Mol Genet Metab. 2017;121(2):127–37. doi: 10.1016/j. ymgme.2017.04.014
  61. Musumeci O, Marino S, Granata F, Morabito R, Bonanno L, Brizzi T, et al. Central nervous system involvement in late-onset Pompe disease: clues from neuroimaging and neuropsychological analysis. Eur J Neurol. 2019;26(3):442–51, e34–5. doi: 10.1111/ ene.13835
  62. Schneider I, Hensel O, Zierz S. White matter lesions in treated late onset Pompe disease are not different to matched controls. Mol Genet Metab. 2019;127(2):128–31. doi: 10.1016/j. ymgme.2019.05.007
  63. Byrne BJ, Fuller DD, Smith BK, Clement N, Coleman K, Cleaver B, et al. Pompe disease gene therapy: neural manifestations require consideration of CNS directed therapy. Ann Transl Med. 2019;7(13):290. doi: 10.21037/atm.2019.05.56
DOI: https://doi.org/10.34763/jmotherandchild.20202402si.2001.000002 | Journal eISSN: 2719-535X | Journal ISSN: 2719-6488
Language: English
Page range: 3 - 8
Published on: Oct 2, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 James E. Davison, published by Institute of Mother and Child
This work is licensed under the Creative Commons Attribution 4.0 License.