References
- Afewerki S, Bassous N, Harb S, Palo-Nieto C, Ruiz-Esparza GU, Marciano FR, Webster TJ, Furtado ASA, Lobo AO. Advances in dual functional antimicrobial and osteoinductive biomaterials for orthopaedic applications. Nanomedicine. 2020 Feb;24:102143. https://doi.org/10.1016/j.nano.2019.102143
- Agnihotri S, Dhiman NK. Development of nano-antimicrobial biomaterials for biomedical applications. In: Tripathi A, Melo JS, editors. Advances in Biomaterials for Biomedical Applications. Singapore: Springer Nature; 2017. p. 479–545. https://doi.org/10.1007/978-981-10-3328-5_12
- Ahmed W, Zhai Z, Gao C. Adaptive antibacterial biomaterial surfaces and their applications. Mater Today Bio. 2019 Jun;2:100017. https://doi.org/10.1016/j.mtbio.2019.100017
- Al-Madboly LA, Aboulmagd A, El-Salam MA, Kushkevych I, El-Morsi RM. Microbial enzymes as powerful natural anti-biofilm candidates. Microb Cell Fact. 2024 Dec;23(1):343. https://doi.org/10.1186/s12934-024-02610-y
- Angulo-Pineda C, Srirussamee K, Palma P, Fuenzalida VM, Cartmell SH, Palza H. Electroactive 3D printed scaffolds based on percolated composites of polycaprolactone with thermally reduced graphene oxide for antibacterial and tissue engineering applications. Nanomaterials. 2020 Feb;10(3):428. https://doi.org/10.3390/nano10030428
- Ashammakhi N, GhavamiNejad A, Tutar R, Fricker A, Roy I, Chatzistavrou X, Hoque Apu E, Nguyen KL, Ahsan T, et al. Highlights on advancing frontiers in tissue engineering. Tissue Eng Part B Rev. 2022 Jun;28(3):633–664. https://doi.org/10.1089/ten.TEB.2021.0012
- Aslam Khan MU, Haider A, Abd Razak SI, Abdul Kadir MR, Haider S, Shah SA, Hasan A, Khan R, Khan SD, Shakir I. Arabi-noxylan/graphene-oxide/nHAp-NPs/PVA bionano composite scaffolds for fractured bone healing. J Tissue Eng Regen Med. 2021b Apr;15(4):322–335. https://doi.org/10.1002/term.3168
- Aslam Khan MU, Haider S, Haider A, Abd Razak SI, Abdul Kadir MR, Shah SA, Javed A, Shakir I, Al-Zahrani AA. Development of porous, antibacterial and biocompatible GO/n-HAp/bacterial cellulose/β-glucan biocomposite scaffold for bone tissue engineering, Arab. J. Chem. 2021a Dec;14(2):14102924, https://doi.org/10.1016/j.arabjc.2020.102924
- Atkinson I, Seciu-Grama AM, Serafim A, Petrescu S, Voicescu M, Anghel EM, Marinescu C, Mitran RA, Mocioiu OC, Cusu JP, et al. Bioinspired 3D scaffolds with antimicrobial, drug delivery, and osteogenic functions for bone regeneration. Drug Deliv Transl Res. 2024 Apr;14(4):1028–1047. https://doi.org/10.1007/s13346-023-01448-y
- Bakhsheshi-Rad HR, Chen XR, Ismail AF, Aziz A, Hamzah E, Najafinezhad A. A new multifunctional monticellite-ciprofloxacin scaffold: Preparation, bioactivity, biocompatibility, and antibacterial properties. Mater Chem Phys.2019 Sep;222:118–131 https://doi.org/10.1016/j.matchemphys.2018.09.054
- Barros J, Monteiro FJ, Ferraz MP. Bioengineering approaches to fight against orthopedic biomaterials related-infections. Int J Mol Sci. 2022 Oct;23(19):11658. https://doi.org/10.3390/ijms231911658
- Biomaterials Market. Industry analysis and forecast (2024–2030) trends, statistics, report ID: SMR_1143, 2023 [Internet]. Pune (India): Stellar Market Research [cited 2025 February 14]. Available from https://www.stellarmr.com/report/Biomaterials-Market/1143
- Budiatin AS, Gani MA, Samirah, Ardianto C, Raharjanti AM, Septiani I, Putri NPKP, Khotib J. Bovine hydroxyapatite-based bone scaffold with gentamicin accelerates vascularization and remodeling of bone defect. Int J Biomater. 2021 May;2021:5560891. https://doi.org/10.1155/2021/5560891
- Cabral CS, Miguel SP, de Melo-Diogo D, Louro RO, Correia IJ. Green reduced graphene oxide functionalized 3D printed scaffolds for bone tissue regeneration. Carbon. 2019 Feb;146:513–523. https://doi.org/10.1016/j.carbon.2019.01.100
- Cao D, Xu Z, Chen Y, Ke Q, Zhang C, Guo Y. Ag-loaded MgSr-Fe-layered double hydroxide/chitosan composite scaffold with enhanced osteogenic and antibacterial property for bone engineering tissue. J Biomed Mater Res B Appl Biomater. 2018 Feb;106(2):863–873. https://doi.org/10.1002/jbm.b.33900
- Caplin JD, García AJ. Implantable antimicrobial biomaterials for local drug delivery in bone infection models. Acta Biomater. 2019 Jul;93:2–11. https://doi.org/10.1016/j.actbio.2019.01.015
- Chaudhary S, Ali Z, Tehseen M, Haney EF, Pantoja-Angles A, Alshehri S, Wang T, Clancy GJ, Ayach M, Hauser C, et al. Efficient in planta production of amidated antimicrobial peptides that are active against drug-resistant ESKAPE pathogens. Nat Commun. 2023 Mar;14(1):1464. https://doi.org/10.1038/s41467-023-37003-z
- Chen L, Shao L, Wang F, Huang Y, Gao F. Enhancement in sustained release of antimicrobial peptide and BMP-2 from degradable three dimensional-printed PLGA scaffold for bone regeneration. RSC Adv. 2019 Apr;9(19):10494–10507. https://doi.org/10.1039/c8ra08788a
- Cheng T, Qu H, Zhang G, Zhang X. Osteogenic and antibacterial properties of vancomycin-laden mesoporous bioglass/PLGA composite scaffolds for bone regeneration in infected bone defects. Artif Cells Nanomed Biotechnol. 2018 Dec;46(8):1935–1947. https://doi.org/10.1080/21691401.2017.1396997
- Cuérel C, Abrassart S, Billières J, Andrey D, Suva D, Dubois-Ferrière V, Uçkay I. Clinical and epidemiological differences between implant-associated and implant-free orthopaedic infections. Eur J Orthop Surg Traumatol. 2017 Feb;27(2):229–231. https://doi.org/10.1007/s00590-016-1879-3
- Cui Y, Liu H, Tian Y, Fan Y, Li S, Wang G, Wang Y, Peng C, Wu D. Dual-functional composite scaffolds for inhibiting infection and promoting bone regeneration. Mater Today Bio. 2022 Aug;16:100409. https://doi.org/10.1016/j.mtbio.2022.100409
- De Mori A, Hafidh M, Mele N, Yusuf R, Cerri G, Gavini E, Tozzi G, Barbu E, Conconi M, Draheim RR, et al. Sustained release from injectable composite gels loaded with silver nanowires designed to combat bacterial resistance in bone regeneration applications. Pharmaceutics. 2019 Mar;11(3):116. https://doi.org/10.3390/pharmaceutics11030116
- Dorati R, DeTrizio A, Modena T, Conti B, Benazzo F, Gastaldi G, Genta I. Biodegradable scaffolds for bone regeneration combined with drug-delivery systems in osteomyelitis therapy. Pharmaceuticals. 2017 Dec;10(4):96. https://doi.org/10.3390/ph10040096
- Eivazzadeh-Keihan R, Maleki A, de la Guardia M, Bani MS, Chenab KK, Pashazadeh-Panahi P, Baradaran B, Mokhtarza-deh A, Hamblin MR. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. J Adv Res. 2019 Mar;18:185–201. https://doi.org/10.1016/j.jare.2019.03.011
- Fang C, Wong TM, Lau TW, To KK, Wong SS, Leung F. Infection after fracture osteosynthesis – Part I. J Orthop Surg. 2017 Jan;25(1):2309499017692712. https://doi.org/10.1177/2309499017692712
- Felice B, Sánchez MA, Socci MC, Sappia LD, Gómez MI, Cruz MK, Felice CJ, Martí M, Pividori MI, Simonelli G, et al. Controlled degradability of PCL-ZnO nanofibrous scaffolds for bone tissue engineering and their antibacterial activity. Mater Sci Eng C. 2018 Dec;93:724–738. https://doi.org/10.1016/j.msec.2018.08.009
- Gao X, Ding J, Liao C, Xu J, Liu X, Lu W. Defensins: The natural peptide antibiotic. Adv Drug Deliv Rev. 2021 Dec;179:114008. https://doi.org/10.1016/j.addr.2021.114008
- Ghiasi Tabari P, Sattari A, Mashhadi Keshtiban M, Karkuki Osguei N, Hardy JG, Samadikuchaksaraei A. Injectable hydrogel scaffold incorporating microspheres containing cobalt-doped bioactive glass for bone healing. J Biomed Mater Res. 2024 Dec;112(12):2225–2242. https://doi.org/10.1002/jbm.a.37773
- Gulati K, Scimeca JC, Ivanovski S, Verron E. Double-edged sword: Therapeutic efficacy versus toxicity evaluations of doped titanium implants. Drug Discovery Today. 2021 Nov;26(11):2734–2742. https://doi.org/10.1016/j.drudis.2021.07.004
- Hasan A, Waibhaw G, Saxena V, Pandey LM. Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Int J Biol Macromol. 2018 May;111:923–934. https://doi.org/10.1016/j.ijbiomac.2018.01.089
- Hassani Besheli N, Damoogh S, Zafar B, Mottaghitalab F, Mota-sadizadeh H, Rezaei F, Ali Shokrgozar M, Farokhi M. Preparation of a codelivery system based on vancomycin/silk scaffold containing silk nanoparticle loaded VEGF. ACS Biomater Sci Eng. 2018 Jul;4(8), 2836–2846. https://doi.org/10.1021/acsbiomateri-als.8b00149
- He Y, Jin Y, Ying X, Wu Q, Yao S, Li Y, Liu H, Ma G, Wang X. Development of an antimicrobial peptide-loaded mineralized collagen bone scaffold for infective bone defect repair. Regen Biomater. 2020 Apr;7(5):515–525. https://doi.org/10.1093/rb/rbaa015
- Høiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen PØ, Molin S, Givskov M, Tolker-Nielsen T, Bjarnsholt T. The clinical impact of bacterial biofilms. Int J Oral Sci. 2011 Apr;3(2):55–65. https://doi.org/10.4248/IJOS11026
- Hussaini IM, Oyewole OA, Sulaiman MA, Dabban AI, Sulaiman AN, Tarek R. Microbial anti-biofilms: Types and mechanism of action. Res Microbiol. 2024 Mar-Apr;175(3):104111. https://doi.org/10.1016/j.resmic.2023.104111
- Jayaprakash N, Elumalai K, Manickam S, Bakthavatchalam G, Tamilselvan P. Carbon nanomaterials: Revolutionizing biomedical applications with promising potential. Nano Mater Sci. 2024 Dec; article in press. https://doi.org/10.1016/j.nanoms.2024.11.004
- Kalbian IL, Goswami K, Tan TL, John N, Foltz C, Parvizi J, Arnold WV. Treatment outcomes and attrition in Gram-negative periprosthetic joint infection. J Arthroplasty. 2020 Mar;35(3):849–854. https://doi.org/10.1016/j.arth.2019.09.044
- Kandhola G, Park S, Lim JW, Chivers C, Song YH, Chung JH, Kim J, Kim JW. Nanomaterial-based scaffolds for tissue engineering applications: A review on graphene, carbon nanotubes and nanocellulose. Tissue Eng Regener Med. 2023 Jun;20(3):411–433. https://doi.org/10.1007/s13770-023-00530-3
- Kapadia BH, Berg RA, Daley JA, Fritz J, Bhave A, Mont MA. Periprosthetic joint infection. Lancet. 2016 Jan;387(10016):386–394. https://doi.org/10.1016/S0140-6736(14)61798-0
- Kaplan JB, Sukhishvili SA, Sailer M, Kridin K, Ramasubbu N. Aggregatibacter actinomycetemcomitans Dispersin B: The Quintessential Antibiofilm Enzyme. Pathogens. 2024 Aug;13(8):668. https://doi.org/10.3390/pathogens13080668
- Karamat-Ullah N, Demidov Y, Schramm M, Grumme D, Auer J, Bohr C, Brachvogel B, Maleki H. 3D Printing of antibacterial, biocompatible, and biomimetic hybrid aerogel-based scaffolds with hierarchical porosities via integrating antibacterial peptide-modi-fied silk fibroin with silica nanostructure. ACS Biomater Sci Eng. 2021 Sep;7(9):4545–4556. https://doi.org/10.1021/acsbiomateri-als.1c00483
- Kennedy DG, O’Mahony AM, Culligan EP, O’Driscoll CM, Ryan KB. Strategies to mitigate and treat orthopaedic device-associated infections. Antibiotics. 2022 Dec;11(12):1822. https://doi.org/10.3390/antibiotics11121822
- Kiselevskiy MV, Anisimova NY, Kapustin AV, Ryzhkin AA, Kuznetsova DN, Polyakova VV, Enikeev NA. Development of bioactive scaffolds for orthopedic applications by designing additively manufactured titanium porous structures: A Critical Review. Biomimetics. 2023 Nov;8(7):546. https://doi.org/10.3390/biomi-metics8070546
- Lau JSY, Korman TM, Woolley I. Life-long antimicrobial therapy: where is the evidence? J Antimicrob Chemother. 2018 Oct;73(10):2601–2612. https://10.1093/jac/dky174
- Lee JH, Baik JM, Yu YS, Kim JH, Ahn CB, Son KH, Kim JH, Choi ES, Lee JW. Development of a heat labile antibiotic eluting 3D printed scaffold for the treatment of osteomyelitis. Sci Rep. 2020 May;10(1):7554. https://doi.org/10.1038/s41598-020-64573-5
- Li L, Shi J, Ma K, Jin J, Wang P, Liang H, Cao Y, Wang X, Jiang Q. Robotic in situ 3D bio-printing technology for repairing large segmental bone defects. J Adv Res. 2020 Nov;30:75-84. https://doi.org/10.1016/j.jare.2020.11.011
- Li M, Zhao P, Wang J, Zhang X, Li J. Functional antimicrobial peptide-loaded 3D scaffolds for infected bone defect treatment with AI and multidimensional printing. Mater Horiz. 2025 Jan 2;12(1):20–36. https://doi.org/10.1039/d4mh01124d
- Liang W, Zhou C, Bai J, Zhang H, Jiang B, Wang J, Fu L, Long H, Huang X, Zhao J, et al. Current advancements in therapeutic approaches in orthopedic surgery: A review of recent trends. Front Bioeng Biotechnol. 2024 Feb;12:1328997. https://doi.org/10.3389/fbioe.2024.1328997
- Litowczenko J, Woźniak-Budych MJ, Staszak K, Wieszczycka K, Jurga S, Tylkowski B. Milestones and current achievements in development of multifunctional bioscaffolds for medical application. Bioact Mater. 2021 Jan;6(8):2412–2438. https://doi.org/10.1016/j.bioactmat.2021.01.007
- Liu Y, Zhao Q, Chen C, Wu C, Ma Y. β-tricalcium phosphate/gelatin composite scaffolds incorporated with gentamycin-loaded chitosan microspheres for infected bone defect treatment. PLoS One. 2022 Dec;17(12):e0277522. https://doi.org/10.1371/journal.pone.0277522
- Lu Y, Wang X, Chen H, Li X, Liu H, Wang J, Qian Z. “Metal-bone” scaffold for accelerated peri-implant endosseous healing. Front Bioeng Biotechnol. 2024 Jan;11:1334072. https://doi.org/10.3389/fbioe.2023.1334072
- Lu Z, Wu Y, Cong Z, Qian Y, Wu X, Shao N, Qiao Z, Zhang H, She Y, Chen K, et al. Effective and biocompatible antibacterial surfaces via facile synthesis and surface modification of peptide polymers. Bioact Mater. 2021 May;6(12):4531–4541. https://doi.org/10.1016/j.bioactmat.2021.05.008
- Luo Y, Humayun A, Mills DK. Surface modification of 3D printed PLA/Halloysite composite scaffolds with antibacterial and osteogenic capabilities. Appl. Sci. 2020 May;(11):3971. https://doi.org/10.3390/app10113971
- Mahmoudi Z, Sedighi M, Jafari A, Naghieh S, Stefanek E, Akbari M, Savoji H. In situ 3D bioprinting: A promising technique in advanced biofabrication strategies. Bioprinting. 2023 Feb;31:e00260. https://doi.org/10.1016/j.bprint.2023.e00260
- Melo SF, Neves SC, Pereira AT, Borges I, Granja PL, Magalhães FD, Gonçalves IC. Incorporation of graphene oxide into poly(?-caprolactone) 3D printed fibrous scaffolds improves their antimicrobial properties. Mater Sci Eng C. 2020 Apr;109:110537. https://doi.org/10.1016/j.msec.2019.110537
- Min KH, Kim KH, Ki MR, Pack SP. Antimicrobial peptides and their biomedical applications: A review. Antibiotics. 2024 Aug;13(9):794. https://doi.org/10.3390/antibiotics13090794
- Momodu II, Savaliya V. Osteomyelitis [Internet, updated 2023 May 31]. Treasure Island (USA): StatPearls Publishing; 2023 [cited 2025 February 14]. Available from https://www.ncbi.nlm.nih.gov/books/NBK532250
- Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: Functions and clinical potential. Nat Rev Drug Discov. 2020 May;19(5):311–332. https://doi.org/10.1038/s41573-019-0058-8
- Moretta A, Scieuzo C, Petrone AM, Salvia R, Manniello MD, Franco A, Lucchetti D, Vassallo A, Vogel H, Sgambato A, et al. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Front Cell Infect Microbiol. 2021 Jun;11:668632. https://doi.org/10.3389/fcimb.2021.668632
- Olmo JAD, Ruiz-Rubio L, Pérez-Alvarez L, Sáez-Martínez V, Vilas-Vilela JL. Antibacterial coatings for improving the performance of biomaterials. Coatings. 2020 Feb;10(2):139. https://doi.org/10.3390/coatings10020139
- Osmon DR, Berbari EF, Berendt AR, Lew D, Zimmerli W, Steckelberg JM, Rao N, Hanssen A, Wilson WR; Infectious Diseases Society of America. Diagnosis and management of prosthetic joint infection: Clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2013 Jan;56(1):e1–e25. https://doi.org/10.1093/cid/cis803
- Pérez-Davila S, Potel-Alvarellos C, Carballo R, González-Rodríguez L, López-Álvarez M, Serra J, Díaz-Rodríguez P, Landín M, González P. Vancomycin-loaded 3D-printed polylactic acid-hydroxyapatite scaffolds for bone tissue engineering. Polymers. 2023 Oct;15(21):4250. https://doi.org/10.3390/polym15214250
- Pietrocola G, Campoccia D, Motta C, Montanaro L, Arciola CR, Speziale P. Colonization and infection of indwelling medical devices by Staphylococcus aureus with an emphasis on orthopedic implants. Int J Mol Sci. 2022 May;23(11):5958. https://doi.org/10.3390/ijms23115958
- Pirisi L, Pennestrì F, Viganò M, Banfi G. Prevalence and burden of orthopaedic implantable-device infections in Italy: A hospital-based national study. BMC Infect Dis. 2020 May;20(1):337. https://doi.org/10.1186/s12879-020-05065-9
- Qin L, Yang S, Zhao C, Yang J, Li F, Xu Z, Yang Y, Zhou H, Li K, Xiong C, et al. Prospects and challenges for the application of tissue engineering technologies in the treatment of bone infections. Bone Res. 2024 May;12(1):28. https://doi.org/10.1038/s41413-024-00332-w
- Rather MA, Gupta K, Mandal M. Microbial biofilm: Formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol. 2021 Dec;52(4):1701–1718. https://doi.org/10.1007/s42770-021-00624-x
- Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, Wagner WR, Sakiyama-Elbert SE, Zhang G, Yaszemski MJ. Introduction to biomaterials science: An evolving, multidisciplinary endeavor. In: Wagner WR, Sakiyama-Elbert SE, Zhang G, and Yaszemski MJ, editors. Biomaterials science: An introduction to materials in medicine. Cambridge (USA): Academic Press; 2020. p. 3–19. https://doi.org/10.1016/B978-0-12-816137-1.00001-5
- Renz N, Feihl S, Dlaska CE, Schütz MA, Trampuz A. [Osteosynthesis-associated infections: Epidemiology, definition and diagnosis] (in German). Unfallchirurg. 2017 Jun;120(6):454–460. https://doi.org/10.1007/s00113-017-0364-8
- Rosas S, Ong AC, Buller LT, Sabeh KG, Law TY, Roche MW, Hernandez VH. Season of the year influences infection rates following total hip arthroplasty. World J Orthop. 2017 Dec;8(12):895–901. https://doi.org/10.5312/wjo.v8.i12.895
- Rozis M, Evangelopoulos DS, Pneumaticos SG. Orthopedic implant-related biofilm pathophysiology: A review of the literature. Cureus. 2021 Jun;13(6):e15634. https://doi.org/10.7759/cu-reus.15634
- Sarigol-Calamak E, Hascicek C. Tissue scaffolds as a local drug delivery system for bone regeneration. Adv Exp Med Biol. 2018;1078:475–493. https://doi.org/10.1007/978-981-13-0950-2_25
- Schwarz EM, Parvizi J, Gehrke T, Aiyer A, Battenberg A, Brown SA, Callaghan JJ, Citak M, Egol K, Garrigues GE, et al. 2018 International consensus meeting on musculoskeletal infection: Research priorities from the general assembly questions. J Orthop Res. 2019 May;37(5):997–1006. https://doi.org/10.1002/jor.24293
- Sehgal RR, Carvalho E, Banerjee R. Mechanically stiff, zinc crosslinked nanocomposite scaffolds with improved osteostimulation and antibacterial properties. ACS Appl Mater Interfaces. 2016 Jun;8(22):13735–13747. https://doi.org/10.1021/acsami.6b02740
- Shah NB, Hersh BL, Kreger A, Sayeed A, Bullock AG, Rothen-berger SD, Klatt B, Hamlin B, Urish KL. Benefits and adverse events associated with extended antibiotic use in total knee arthroplasty periprosthetic joint infection. Clin Infect Dis. 2020 Feb;70(4):559–565. https://doi.org/10.1093/cid/ciz261
- Shen M, Wang L, Gao Y, Feng L, Xu C, Li S, Wang X, Wu Y, Guo Y, Pei G. 3D bioprinting of in situ vascularized tissue engineered bone for repairing large segmental bone defects. Mater Today Bio. 2022 Aug;16:100382. https://doi.org/10.1016/j.mtbio.2022.100382
- Shrestha BK, Shrestha S, Tiwari AP, Kim JI, Ko SW, Kim HJ, Park CH, Kim CS. Bio-inspired hybrid scaffold of zinc oxide-function-alized multi-wall carbon nanotubes reinforced polyurethane nano-fibersfor bone tissue engineering. Mater. Des. 2017 Jul;133:69–81. https://doi.org/10.1016/j.matdes.2017.07.049
- Shuai C, Wang C, Qi F, Shuping P, Yang W, He C, Wang G, Qian G. Enhanced crystallinity and antibacterial of PHBV scaffolds incorporated with zinc oxide. J Nanomater. 2020 Jul;:6014816. https://doi.org/10.1155/2020/6014816
- Sun J, Tan H, Liu H, Jin D, Yin M, Lin H, Qu X, Liu C. A reduced polydopamine nanoparticle-coupled sprayable PEG hydrogel adhesive with anti-infection activity for rapid wound sealing. Biomater Sci. 2020 Dec;8(24):6946–6956. https://doi.org/10.1039/d0bm01213k
- Tian L, Zhang Z, Tian B, Zhang X, Wang N. Study on antibacterial properties and cytocompatibility of EPL coated 3D printed PCL/HA composite scaffolds. RSC Adv. 2020 Jan;10(8):4805–4816. https://doi.org/10.1039/c9ra10275b
- Valour F, Karsenty J, Bouaziz A, Ader F, Tod M, Lustig S, Laurent F, Ecochard R, Chidiac C, Ferry T; Lyon BJI Study Group. Antimicrobial-related severe adverse events during treatment of bone and joint infection due to methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother. 2014 Jan;58(2):746–755. https://doi.org/10.1128/aac.02032-13
- Wei J, Wang Y, Jiang J, Yan Y, Fan D, Yang X, Zuo Y, Li Y, Gu H, Li J. Development of an antibacterial bone graft by immobilization of levofloxacin hydrochloride-loaded mesoporous silica microspheres on a porous scaffold surface. J Biomed Nanotechnol. 2019 May;15(5):1097-1105. https://doi.org/10.1166/jbn.2019.2743
- Wen X, Wang J, Pei X, Zhang X. Zinc-based biomaterials for bone repair and regeneration: mechanism and applications. J Mater Chem B. 2023 Dec;11(48):11405–11425. https://doi.org/10.1039/d3tb01874a
- Xu H, Shen M, Shang H, Xu W, Zhang S, Yang HR, Zhou D, Hak-karainen M. Osteoconductive and antibacterial poly(lactic acid) fibrous membranes impregnated with biobased nanocarbons for biodegradable bone regenerative scaffolds. Ind Eng Chem Res. 2021 Aug;60(32):12021–12031 https://doi.org/10.1021/acs.iecr.1c02165
- Yang Y, Wang J, Huang S, Li M, Chen J, Pei D, Tang Z, Guo B. Bacteria-responsive programmed self-activating antibacterial hydrogel to remodel regeneration microenvironment for infected wound healing. Natl Sci Rev. 2024 Jan;11(4):nwae044. https://doi.org/10.1093/nsr/nwae044
- Ye Z, Zhu X, Mutreja I, Boda SK, Fischer NG, Zhang A, Lui C, Qi Y, Aparicio C. Biomimetic mineralized hybrid scaffolds with antimicrobial peptides. Bioact Mater. 2021 Jan;6(8):2250–2260. https://doi.org/10.1016/j.bioactmat.2020.12.029
- Zhang N, Wang Z, Zeng Y, Guo Y, Wang L, Liu J, Wang Y, Zhan P. Butterfly metamorphosis inspired injectable in situ forming scaffolds with time-dependent pore formation for bone regeneration. J Mater Sci. 2023 Apr;58:7456–7468. https://doi.org/10.1007/s10853-023-08466-8
- Zhang Y, Zhai D, Xu M, Yao Q, Zhu H, Chang J, Wu C. 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity. Biofabrication. 2017 Jun;9(2):025037. https://doi.org/10.1088/1758-5090/aa6ed6
- Zhao C, Liu W, Zhu M, Wu C, Zhu Y. Bioceramic-based scaffolds with antibacterial function for bone tissue engineering: A review. Bioact Mater. 2022 Feb;18:383–398. https://doi.org/10.1016/j.bio-actmat.2022.02.010
- Zhou J, Zhou XG, Wang JW, Zhou H, Dong J. Treatment of osteomyelitis defects by a vancomycin-loaded gelatin/β-tricalcium phosphate composite scaffold. Bone Joint Res. 2018a Jan;7(1):46–57. https://doi.org/10.1302/2046-3758.71.bjr-2017-0129.r2
- Zhou Z, Yao Q, Li L, Zhang X, Wei B, Yuan L, Wang L. Antimicrobial activity of 3D-printed poly(ε-caprolactone) (PCL) composite scaffolds presenting vancomycin-loaded polylactic acid-glycolic acid (PLGA) microspheres. Med Sci Monit. 2018b Sep;24:6934–6945. https://doi.org/10.12659/msm.911770
- Zhu T, Zhu M, Zhu Y. Fabrication of forsterite scaffolds with photothermal-induced antibacterial activity by 3D printing and polymer-derived ceramics strategy. Ceram Int. 2020 Jun;46(9):13607–13614. https://doi.org/10.1016/j.ceramint.2020.02.146
- Zimmerli W. Clinical presentation and treatment of orthopaedic implant-associated infection. J Intern Med. 2014 Aug;276(2):111–119. https://doi.org/10.1111/joim.12233