Have a personal or library account? Click to login
Harnessing Monoterpenes and Monoterpenoids as Weapons against Antimicrobial Resistance Cover

Harnessing Monoterpenes and Monoterpenoids as Weapons against Antimicrobial Resistance

Open Access
|Mar 2025

References

  1. Abdelhamid AG, Yousef AE. Natural antimicrobials suitable for combating desiccation-resistant Salmonella enterica in milk powder. Microorganisms. 2021 Feb;9(2):421. https://doi.org/10.3390/microorganisms9020421
  2. Aggarwal KK, Ahmad A, Kumar TRS, Jain N, Gupta VK, Kumar S, Khanuja SPS. Antimicrobial activity spectra of Pelargonium graveolens L. and Cymbopogon winterianus Jowitt oil constituents and acyl derivatives. J. Med. Aromat. Plant Sci. 2000;22:544–548.
  3. Aleksic Sabo V, Nikolic I, Mimica-Dukic N, Knezevic P. AntiAcinetobacter baumannii activity of selected phytochemicals alone, in binary combinations and in combinations with conventional antibiotics. Nat Prod Res. 2021 Dec;35(24):5964–5967. https://doi.org/10.1080/14786419.2020.1808635
  4. Aljeldah MM. Antioxidant and antimicrobial potencies of chemically-profiled essential oil from Asteriscus graveolens against clinically-important pathogenic microbial strains. Molecules. 2022 May; 27(11):3539. https://doi.org/10.3390/molecules27113539
  5. Al-Marzooq F, Ghazawi A, Daoud L, Tariq S. Boosting the antibacterial activity of azithromycin on multidrug-resistant Escherichia coli by efflux pump inhibition coupled with outer membrane permeabilization induced by phenylalanine-arginine β-naphthylamide. Int J Mol Sci. 2023 May;24(10):8662. https://doi.org/10.3390/ijms24108662
  6. Al-Marzooq F, Ghazawi A, Tariq S, Daoud L, Collyns T. Discerning the role of polymyxin B nonapeptide in restoring the antibacterial activity of azithromycin against antibiotic-resistant Escherichia coli. Front Microbiol. 2022 Sep;13:998671. https://doi.org/10.3389/fmicb.2022.998671
  7. Barbosa LN, Alves FCB, Andrade BFMT, Albano M, Rall VLM, Fernandes AAH, Buzalaf MAR, Leite AL, de Pontes LG, Dos Santos LD, et al. Proteomic analysis and antibacterial resistance mechanisms of Salmonella Enteritidis submitted to the inhibitory effect of Origanum vulgare essential oil, thymol and carvacrol. J Proteomics. 2020 Mar;214:103625. https://doi.org/10.1016/j.jprot.2019.103625
  8. Berdejo D, Merino N, Pagán E, García-Gonzalo D, Pagán R. Genetic variants and phenotypic characteristics of Salmonella Typhimurium-resistant mutants after exposure to carvacrol. Microorganisms. 2020 Jun;8(6):937. https://doi.org/10.3390/microorganisms8060937
  9. Biernasiuk A, Baj T, Malm A. Clove essential oil and its main constituent, eugenol, as potential natural antifungals against Candida spp. alone or in combination with other antimycotics due to synergistic interactions. Molecules. 2022 Dec;28(1):215. https://doi.org/10.3390/molecules28010215
  10. Buru AS, Neela VK, Mohandas K, Pichika MR. Microarray analysis of the genomic effect of eugenol on methicillin-resistant Staphylococcus aureus. Molecules. 2022 May;27(10):3249. https://doi.org/10.3390/molecules27103249
  11. Caballero Gómez N, Manetsberger J, Benomar N, Castillo Gutiér-rez S, Abriouel H. Antibacterial and antibiofilm effects of essential oil components, EDTA and HLE disinfectant solution on Enterococcus, Pseudomonas and Staphylococcus sp. multiresistant strains isolated along the meat production chain. Front Microbiol. 2022 Oct;13:1014169. https://doi.org/10.3389/fmicb.2022.1014169
  12. Choudhary M, Shrivastava R, Vashistt J. Eugenol and geraniol impede Csu-pilus assembly and evades multidrug-resistant Acinetobacter baumannii biofilms: In-vitro and in-silico evidence. Biochem Biophys Res Commun. 2022 Dec;636(Pt_2):10–17. https://doi.org/10.1016/j.bbrc.2022.10.095
  13. Chraibi M, Farah A, Elamin O, Iraqui HM, Fikri-Benbrahim K. Characterization, antioxidant, antimycobacterial, antimicrobial effcts of Moroccan rosemary essential oil, and its synergistic antimicrobial potential with carvacrol. J Adv Pharm Technol Res. 2020 Jan–Mar;11(1):25–29. https://doi.org/10.4103/japtr.japtr_74_19
  14. Corona-Gómez L, Hernández-Andrade L, Mendoza-Elvira S, Suazo FM, Ricardo-González DI, Quintanar-Guerrero D. In vitro antimicrobial effect of essential tea tree oil (Melaleuca alternifolia), thymol, and carvacrol on microorganisms isolated from cases of bovine clinical mastitis. Int J Vet Sci Med. 2022 Sep;10(1):72–79. https://doi.org/10.1080/23144599.2022.2123082
  15. Daoud L, Al-Marzooq F, Ghazawi A, Anes F, Collyns T. High efficacy and enhanced synergistic activity of the novel siderophorecephalosporin cefiderocol against multidrug-resistant and extensively drug-resistant Klebsiella pneumoniae from inpatients attending a single hospital in the United Arab Emirates. J Infect Public Health. 2023 Dec;16 (Suppl_1):33–44. https://doi.org/10.1016/j.jiph.2023.11.003
  16. de Aguiar FC, Solarte AL, Tarradas C, Gómez-Gascón L, Astorga R, Maldonado A, Huerta B. Combined effect of conventional antimicrobials with essential oils and their main components against resistant Streptococcus suis strains. Lett Appl Microbiol. 2019 Jun; 68(6):562–572. https://doi.org/10.1111/lam.13151
  17. de Souza GHA, Dos Santos Radai JA, Mattos Vaz MS, Esther da Silva K, Fraga TL, Barbosa LS, Simionatto S. In vitro and in vivo antibacterial activity assays of carvacrol: A candidate for development of innovative treatments against KPC-producing Klebsiella pneumoniae. PLoS One. 2021 Feb;16(2):e0246003. https://doi.org/10.1371/journal.pone.0246003
  18. Dhara L, Tripathi A. The use of eugenol in combination with cefotaxime and ciprofloxacin to combat ESBL-producing quinoloneresistant pathogenic Enterobacteriaceae. J Appl Microbiol. 2020 Dec; 129(6):1566–1576. https://doi.org/10.1111/jam.14737
  19. El-Far A, Samir S, El-Gebaly E, Taha NY, Fahmy EM, Diab TM, El-Shenawy A. Assessment of eugenol inhibitory effect on biofilm formation and biofilm gene expression in methicillin resistant Staphylococcus aureus clinical isolates in Egypt. Infect Genet Evol. 2021 Apr;89:104722. https://doi.org/10.1016/j.meegid.2021.104722
  20. Figueroa-Lopez KJ, Cabedo L, Lagaron JM, Torres-Giner S. Development of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) monolayers containing eugenol and their application in multilayer antimicrobial food packaging. Front Nutr. 2020 Sep; 7:140. https://doi.org/10.3389/fnut.2020.00140
  21. Flores Z, San-Martin D, Beldarraín-Iznaga T, Leiva-Vega J, Villalobos-Carvajal R. Effect of homogenization method and carvacrol content on microstructural and physical properties of chitosan-based films. Foods. 2021 Jan;10(1):141. https://doi.org/10.3390/foods10010141
  22. Giovagnoni G, Rossi B, Tugnoli B, Ghiselli F, Bonetti A, Piva A, Grilli E. Thymol and carvacrol downregulate the expression of Salmonella typhimurium virulence genes during an in vitro infection on Caco-2 cells. Microorganisms. 2020 Jun;8(6):862. https://doi.org/10.3390/microorganisms8060862
  23. Guo W, Qiu M, Pu Z, Long N, Yang M, Ren K, Ning R, Zhang S, Peng F, Sun F, et al. Geraniol – A potential alternative to antibiotics for bovine mastitis treatment without disturbing the host microbial community or causing drug residues and resistance. Front Cell Infect Microbiol. 2023 Feb;13:1126409. https://doi.org/10.3389/fcimb.2023.1126409
  24. Iraji A, Yazdanpanah S, Alizadeh F, Mirzamohammadi S, Ghasemi Y, Pakshir K, Yang Y, Zomorodian K. Screening the antifungal activities of monoterpenes and their isomers against Candida species. J Appl Microbiol. 2020 Dec;129(6):1541–1551. https://doi.org/10.1111/jam.14740
  25. Ismail M, Srivastava V, Marimani M, Ahmad A. Carvacrol modulates the expression and activity of antioxidant enzymes in Candida auris. Res Microbiol. 2022 Mar–Apr;173(3):103916. https://doi.org/10.1016/j.resmic.2021.103916
  26. Jafri H, Khan MSA, Ahmad I. In vitro efficacy of eugenol in inhibiting single and mixed-biofilms of drug-resistant strains of Candida albicans and Streptococcus mutans. Phytomedicine. 2019 Feb;54:206-213. https://doi.org/10.1016/j.phymed.2018.10.005
  27. Kavanaugh NL, Ribbeck K. Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Appl Environ Microbiol. 2012 Jun;78(11):4057–4061.
  28. Khan I, Bahuguna A, Shukla S, Aziz F, Chauhan AK, Ansari MB, Bajpai VK, Huh YS, Kang SC. Antimicrobial potential of the foodgrade additive carvacrol against uropathogenic E. coli based on membrane depolarization, reactive oxygen species generation, and molecular docking analysis. Microb Pathog. 2020 Feb;142:104046. https://doi.org/10.1016/j.micpath.2020.104046
  29. Köse EO. In vitro activity of carvacrol in combination with meropenem against carbapenem-resistant Klebsiella pneumoniae. Folia Microbiol. 2022 Feb;67(1):143–156. https://doi.org/10.1007/s12223-021-00908-7
  30. Kumar R, Nehul S, Singh A, Tomar S. Identification and evaluation of antiviral potential of thymoquinone, a natural compound targeting Chikungunya virus capsid protein. Virology. 2021 Sep;561:36–46. https://doi.org/10.1016/j.virol.2021.05.013
  31. Kwiatkowski P, Łopusiewicz Ł, Pruss A, Kostek M, Sienkiewicz M, Bonikowski R, Wojciechowska-Koszko I, Dołęgowska B. Antibacterial activity of selected essential oil compounds alone and in combination with β-lactam antibiotics against MRSA strains. Int J Mol Sci. 2020 Sep;21(19):7106. https://doi.org/10.3390/ijms21197106
  32. Kwiatkowski P, Pruss A, Wojciuk B, Dołęgowska B, Wajs-Bonikowska A, Sienkiewicz M, Mężyńska M, Łopusiewicz Ł. The influence of essential oil compounds on antibacterial activity of mupirocin-susceptible and induced low-level mupirocin-resistant MRSA strains. Molecules. 2019 Aug;24(17):3105. https://doi.org/10.3390/molecules24173105
  33. Kwiatkowski P, Sienkiewicz M, Pruss A, Łopusiewicz Ł, Arszyńska N, Wojciechowska-Koszko I, Kilanowicz A, Kot B, Dołęgowska B. Antibacterial and anti-biofilm activities of essential oil compounds against New Delhi metallo-β-lactamase-1-producing uropathogenic Klebsiella pneumoniae strains. Antibiotics. 2022 Jan;11(2):147. https://doi.org/10.3390/antibiotics11020147
  34. Li CH, Landis RF, Makabenta JM, Nabawy A, Tronchet T, Archambault D, Liu Y, Huang R, Golan M, Cui W, et al. Nanotherapeutics using all-natural materials. Effective treatment of wound biofilm infections using crosslinked nanoemulsions. Mater Horiz. 2021 Jun;8(6):1776–1782. https://doi.org/10.1039/d0mh01826k
  35. Macêdo NS, de Sousa Silveira Z, Cordeiro PPM, Coutinho HDM, Júnior JPS, Júnior LJQ, Siyadatpanah A, Kim B, da Cunha FAB, da Silva MV. Inhibition of Staphylococcus aureus efflux pump by O-eugenol and its toxicity in Drosophila melanogaster animal model. Biomed Res Int. 2022 Jul;2022:1440996. https://doi.org/10.1155/2022/1440996
  36. Mahizan NA, Yang SK, Moo CL, Song AA, Chong CM, Chong CW, Abushelaibi A, Lim SE, Lai KS. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules. 2019 Jul;24(14):2631. https://doi.org/10.3390/molecules24142631
  37. Marini E, Di Giulio M, Ginestra G, Magi G, Di Lodovico S, Marino A, Facinelli B, Cellini L, Nostro A. Efficacy of carvacrol against resistant rapidly growing mycobacteria in the planktonic and biofilm growth mode. PLoS One. 2019 Jul;14(7):e0219038. https://doi.org/10.1371/journal.pone.0219038
  38. Mastoor S, Nazim F, Rizwan-Ul-Hasan S, Ahmed K, Khan S, Ali SN, Abidi SH. Analysis of the antimicrobial and anti-biofilm activity of natural compounds and their analogues against Staphylococcus aureus Isolates. Molecules. 2022 Oct;27(20):6874. https://doi.org/10.3390/molecules27206874
  39. Mechmechani S, Gharsallaoui A, Fadel A, El Omari K, Khelissa S, Hamze M, Chihib NE. Microencapsulation of carvacrol as an efficient tool to fight Pseudomonas aeruginosa and Enterococcus faecalis biofilms. PLoS One. 2022 Jul;17(7):e0270200. https://doi.org/10.1371/journal.pone.0270200
  40. Mediouni S, Jablonski JA, Tsuda S, Barsamian A, Kessing C, Richard A, Biswas A, Toledo F, Andrade VM, Even Y, et al. Oregano oil and its principal component, carvacrol, inhibit HIV-1 fusion into target cells. J Virol. 2020 Jul;94(15):e00147-20. https://doi.org/10.1128/jvi.00147-20
  41. Mir M, Ahmed N, Permana AD, Rodgers AM, Donnelly RF, Rehman AU. Enhancement in site-specific delivery of carvacrol against methicillin resistant Staphylococcus aureus induced skin infections using enzyme responsive nanoparticles: A proof of concept study. Pharmaceutics. 2019 Nov;11(11):606. https://doi.org/10.3390/pharmaceutics11110606
  42. Moo CL, Osman MA, Yang SK, Yap WS, Ismail S, Lim SH, Chong CM, Lai KS. Antimicrobial activity and mode of action of 1,8-cineol against carbapenemase-producing Klebsiella pneumoniae. Sci Rep. 2021 Oct;11(1):20824. https://doi.org/10.1038/s41598-021-00249-y
  43. Moo CL, Yang SK, Osman MA, Yuswan MH, Loh JY, Lim WM, Lim SH, Lai KS. Antibacterial activity and mode of action of β-caryophyllene on Bacillus cereus. Pol J Microbiol. 2020;69(1):49–54. https://doi.org/10.33073/pjm-2020-007
  44. Muniz DF, Dos Santos Barbosa CR, de Menezes IRA, de Sousa EO, Pereira RLS, Júnior JTC, Pereira PS, de Matos YMLS, da Costa RHS, de Morais Oliveira-Tintino CD, et al. In vitro and in silico inhibitory effects of synthetic and natural eugenol derivatives against the NorA efflux pump in Staphylococcus aureus. Food Chem. 2021 Feb; 337:127776. https://doi.org/10.1016/j.foodchem.2020.127776
  45. Noumi E, Ahmad I, Adnan M, Merghni A, Patel H, Haddaji N, Bouali N, Alabbosh KF, Ghannay S, Aouadi K, et al. GC/MS profiling, antibacterial, anti-quorum sensing, and antibiofilm properties of Anethum graveolens L. essential oil: Molecular docking study and in-silico ADME profiling. Plants. 2023 May;12(10):1997. https://doi.org/10.3390/plants12101997
  46. Owen L, Webb JP, Green J, Smith LJ, Laird K. From formulation to in vivo model: A comprehensive study of a synergistic relationship between vancomycin, carvacrol, and cuminaldehyde against Enterococcus faecium. Phytother Res. 2020 Jul;34(7):1638–1649. https://doi.org/10.1002/ptr.6631
  47. Owen L, White AW, Laird K. Characterisation and screening of antimicrobial essential oil components against clinically important antibiotic-resistant bacteria using thin layer chromatography-direct bioautography hyphenated with GC-MS, LC-MS and NMR. Phytochem Anal. 2019 Mar;30(2):121–131. https://doi.org/10.1002/pca.2797
  48. Oz Y, Nabawy A, Fedeli S, Gupta A, Huang R, Sanyal A, Rotello VM. Biodegradable poly(lactic acid) stabilized nanoemulsions for the treatment of multidrug-resistant bacterial biofilms. ACS Appl Mater Interfaces. 2021 Sep;13(34):40325–40331. https://doi.org/10.1021/acsami.1c11265
  49. Panagiotopoulos A, Tseliou M, Karakasiliotis I, Kotzampasi DM, Daskalakis V, Kesesidis N, Notas G, Lionis C, Kampa M, Pirintsos S, et al. p-Cymene impairs SARS-CoV-2 and Influenza A (H1N1) viral replication: In silico predicted interaction with SARS-CoV-2 nucleocapsid protein and H1N1 nucleoprotein. Pharmacol Res Perspect. 2021 Aug;9(4):e00798. https://doi.org/10.1002/prp2.798
  50. Pesingi PV, Singh BR, Pesingi PK, Bhardwaj M, Singh SV, Kumawat M, Sinha DK, Gandham RK. MexAB-OprM efflux pump of Pseudomonas aeruginosa offers resistance to carvacrol: A herbal antimicrobial agent. Front Microbiol. 2019 Nov;10:2664. https://doi.org/10.3389/fmicb.2019.02664
  51. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog Glob Health. 2015;109(7): 309–318. https://doi.org/10.1179/2047773215y.0000000030
  52. Qian W, Sun Z, Wang T, Yang M, Liu M, Zhang J, Li Y. Antimicrobial activity of eugenol against carbapenem-resistant Klebsiella pneumoniae and its effect on biofilms. Microb Pathog. 2020 Feb;139:103924. https://doi.org/10.1016/j.micpath.2019.103924
  53. Rathinam P, Murari BM, Viswanathan P. Biofilm inhibition and antifouling evaluation of sol-gel coated silicone implants with prolonged release of eugenol against Pseudomonas aeruginosa. Biofouling. 2021 May;37(5):521–537. https://doi.org/10.1080/08927014.2021.1933960
  54. Rossi B, Esteban MA, García-Beltran JM, Giovagnoni G, Cuesta A, Piva A, Grilli E. Antimicrobial power of organic acids and nature-identical compounds against two Vibrio spp.: An in vitro study. Microorganisms. 2021 Apr;9(5):966. https://doi.org/10.3390/microorganisms9050966
  55. Sayout A, Ouarhach A, Rabie R, Dilagui I, Soraa N, Romane A. Evaluation of antibacterial activity of Lavandulapedunculata subsp. atlantica (Braun-Blanq.) Romo essential oil and selected terpenoids against resistant bacteria strains-structure-activity relationships. Chem Biodivers. 2020 Jan;17(1):e1900496. https://doi.org/10.1002/cbdv.201900496
  56. Schlemmer KB, Jesus FPK, Tondolo JSM, Weiblen C, Azevedo MI, Machado VS, Botton SA, Alves SH, Santurio JM. In vitro activity of carvacrol, cinnamaldehyde and thymol combined with antifungals against Malassezia pachydermatis. J Mycol Med. 2019 Dec; 29(4):375–377. https://doi.org/10.1016/j.mycmed.2019.08.003
  57. Shaban S, Patel M, Ahmad A. Improved efficacy of antifungal drugs in combination with monoterpene phenols against Candida auris. Sci Rep. 2020 Jan;10(1):1162. https://doi.org/10.1038/s41598-020-58203-3
  58. Sharifzadeh A, Shokri H, Abbaszadeh S. Interaction of carvacroland voriconazole against drug-resistant Candida strains isolated from patients with candidiasis. J Mycol Med. 2019 Apr;29(1):44–48. https://doi.org/10.1016/j.mycmed.2018.11.001
  59. Sharifzadeh A, Shokri H. In vitro synergy of eugenol on the antifungal effects of voriconazole against Candida tropicalis and Candida krusei strains isolated from the genital tract of mares. Equine Vet J. 2021 Jan;53(1):94–101. https://doi.org/10.1111/evj.13268
  60. Sharma HK, Gupta P, Nagpal D, Mukherjee M, Parmar VS, Lather V. Virtual screening and antimicrobial evaluation for identification of natural compounds as the prospective inhibitors of antibacterial drug resistance targets in Staphylococcus aureus. Fitoterapia. 2023 Jul;168:105554. https://doi.org/10.1016/j.fitote.2023.105554
  61. Sim JXF, Khazandi M, Chan WY, Trott DJ, Deo P. Antimicrobial activity of thyme oil, oregano oil, thymol and carvacrol against sensitive and resistant microbial isolates from dogs with otitis externa. Vet Dermatol. 2019 Dec;30(6):524-e159. https://doi.org/10.1111/vde.12794
  62. Šimunović K, Bucar F, Klančnik A, Pompei F, Paparella A, Smole Možina S. In vitro effect of the common culinary herb winter savory (Satureja montana) against the infamous food pathogen Campylobacter jejuni. Foods. 2020 Apr;9(4):537. https://doi.org/10.3390/foods9040537
  63. Sousa Silveira Z, Macêdo NS, Sampaio Dos Santos JF, Sampaio de Freitas T, Rodrigues Dos Santos Barbosa C, Júnior DLS, Muniz DF, Castro de Oliveira LC, Júnior JPS, Cunha FABD, et al. Evaluation of the antibacterial activity and efflux pump reversal of thymol and carvacrol against Staphylococcus aureus and their toxicity in Drosophila melanogaster. Molecules. 2020 Apr;25(9):2103. https://doi.org/10.3390/molecules25092103
  64. Stringaro A, Colone M, Cecchetti S, Zeppetella E, Spadaro F, Angiolella L. “In vivo” and “in vitro” antimicrobial activity of Origanum vulgare essential oil and its two phenolic compounds on clinical isolates of Candida spp. Arch Microbiol. 2022 Dec;205(1):15. https://doi.org/10.1007/s00203-022-03355-1
  65. Swetha TK, Vikraman A, Nithya C, Hari Prasath N, Pandian SK. Synergistic antimicrobial combination of carvacrol and thymol impairs single and mixed-species biofilms of Candida albicans and Staphylococcus epidermidis. Biofouling. 2020 Nov;36(10):1256–1271. https://doi.org/10.1080/08927014.2020.1869949
  66. Touil HFZ, Boucherit K, Boucherit-Otmani Z, Khoder G, Madkour M, Soliman SSM. Optimum inhibition of amphotericin-B-resistant Candida albicans strain in singleand mixed-species biofilms by Candida and non-Candida terpenoids. Biomolecules. 2020 Feb;10(2):342. https://doi.org/10.3390/biom10020342
  67. Wang L, Wang D, Wu X, Xu R, Li Y. Antiviral mechanism of carvacrol on HSV-2 infectivity through inhibition of RIP3-mediated programmed cell necrosis pathway and ubiquitin-proteasome system in BSC-1 cells. BMC Infect Dis. 2020a Nov;20(1):832. https://doi.org/10.1186/s12879-020-05556-9
  68. Wang Y, Hong X, Liu J, Zhu J, Chen J. Interactions between fish isolates Pseudomonas fluorescens and Staphylococcus aureus in dualspecies biofilms and sensitivity to carvacrol. Food Microbiol. 2020b Oct;91:103506. https://doi.org/10.1016/j.fm.2020.103506
  69. Wang Y, Jiang Y, Chen J, Gong H, Qin Q, Wei S. In vitro antiviral activity of eugenol on Singapore grouper iridovirus. Fish Shellfish Immunol. 2024 Aug;151:109748. https://doi.org/10.1016/j.fsi.2024.109748
  70. Yang SK, Yusoff K, Ajat M, Wee CY, Yap PS, Lim SH, Lai KS. Combinatorial antimicrobial efficacy and mechanism of linalool against clinically relevant Klebsiella pneumoniae. Front Microbiol. 2021a Mar;12:635016. https://doi.org/10.3389/fmicb.2021.635016
  71. Yang SK, Yusoff K, Ajat M, Yap WS, Lim SE, Lai KS. Antimicrobial activity and mode of action of terpene linalyl anthranilate against carbapenemase-producing Klebsiella pneumoniae. J Pharm Anal. 2021b Apr;11(2):210–219. https://doi.org/10.1016/j.jpha.2020.05.014
  72. Zielińska-Błajet M, Feder-Kubis J. Monoterpenes and their derivatives-recent development in biological and medical applications. Int J Mol Sci. 2020 Sep;21(19):7078. https://doi.org/10.3390/ijms21197078
DOI: https://doi.org/10.33073/pjm-2025-010 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 1 - 18
Submitted on: Jul 12, 2024
Accepted on: Sep 16, 2024
Published on: Mar 7, 2025
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Amanda Shen-Yee Kong, Swee-Hua Erin Lim, Wan-Hee Cheng, Mohd Hafis Yuswan, Ngai-Paing Tan, Kok-Song Lai, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.