Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, et al. The RAST server: Rapid annotations using subsystems technology. BMC Genomics. 2008 Feb;9:75. https://doi.org/10.1186/1471-2164-9-75
Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL, Rebelo AR, Florensa AF, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020 Dec;75(12):3491–3500. https://doi.org/10.1093/jac/dkaa345
Carvalhaes CG, Sader HS, Flamm RK, Streit JM, Mendes RE. assessment of tedizolid in vitro activity and resistance mechanisms against a collection of Enterococcus spp. causing invasive infections, including isolates requiring an optimized dosing strategy for dap-tomycin from U.S. and European medical centers, 2016 to 2018. Antimicrob Agents Chemother. 2020 Mar 24;64(4):e00175-20. https://doi.org/10.1128/aac.00175-20
Che Y, Yang Y, Xu X, Břinda K, Polz MF, Hanage WP, Zhang T. Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes. Proc Natl Acad Sci USA. 2021 Feb;118(6):e2008731118. https://doi.org/10.1073/pnas.2008731118
Chen H, Wang X, Yin Y, Li S, Zhang Y, Wang Q, Wang H. Molecular characteristics of oxazolidinone resistance in enterococci from a multicenter study in China. BMC Microbiol. 2019 Jul 12;19(1):162. https://doi.org/10.1186/s12866-019-1537-0
Cui L, Wang Y, Lv Y, Wang S, Song Y, Li Y, Liu J, Xue F, Yang W, Zhang J. nationwide surveillance of novel oxazolidinone resistance gene optrA in Enterococcus isolates in China from 2004 to 2014. Antimicrob Agents Chemother. 2016 Nov;60(12):7490–7493. https://doi.org/10.1128/aac.01256-16
Egan SA, Shore AC, O’Connell B, Brennan GI, Coleman DC. Linezolid resistance in Enterococcus faecium and Enterococcus faecalis from hospitalized patients in Ireland: High prevalence of the MDR genes optrA and poxtA in isolates with diverse genetic backgrounds. J Antimicrob Chemother. 2020 Jul;75(7):1704–1711. https://doi.org/10.1093/jac/dkaa075
Farman M, Yasir M, Al-Hindi RR, Farraj SA, Jiman-Fatani AA, Alawi M, Azhar EI. Genomic analysis of multidrug-resistant clinical Enterococcus faecalis isolates for antimicrobial resistance genes and virulence factors from the western region of Saudi Arabia. Antimicrob Resist Infect Control. 2019 Mar 25;8:55. https://doi.org/10.1186/s13756-019-0508-4
Fioriti S, Coccitto SN, Cedraro N, Simoni S, Morroni G, Brenciani A, Mangiaterra G, Vignaroli C, Vezzulli L, Biavasco F, et al. Linezolid resistance genes in Enterococci isolated from sediment and zooplankton in two Italian coastal areas. Appl Environ Microbiol. 2021 Apr;87(9):e02958-20. https://doi.org/10.1128/AEM.02958-20
Freitas AR, Elghaieb H, León-Sampedro R, Abbassi MS, Novais C, Coque TM, Hassen A, Peixe L. Detection of optrA in the African continent (Tunisia) within a mosaic Enterococcus faecalis plasmid from urban wastewaters. J Antimicrob Chemother. 2017 Dec;72(12): 3245–3251. https://doi.org/10.1093/jac/dkx321
Freitas AR, Tedim AP, Novais C, Lanza VF, Peixe L. Comparative genomics of global optrA-carrying Enterococcus faecalis uncovers a common chromosomal hotspot for optrA acquisition within a diversity of core and accessory genomes. Microb Genom. 2020 Jun; 6(6):e000350. https://doi.org/10.1099/mgen.0.000350
Haghi F, Lohrasbi V, Zeighami H. High incidence of virulence determinants, aminoglycoside and vancomycin resistance in enterococci isolated from hospitalized patients in Northwest Iran. BMC Infect Dis. 2019 Aug;19(1):744. https://doi.org/10.1186/s12879-019-4395-3
Hasman H, Clausen PTLC, Kaya H, Hansen F, Knudsen JD, Wang M, Holzknecht BJ, Samulioniené J, Røder BL, Frimodt-Møller N, et al. LRE-Finder, a Web tool for detection of the 23S rRNA mutations and the optrA, cfr, cfr(B) and poxtA genes encoding linezolid resistance in enterococci from whole-genome sequences. J Antimicrob Chemother. 2019 Jun;74(6):1473–1476. https://doi.org/10.1093/jac/dkz092
Hu Y, Won D, Nguyen LP, Osei KM, Seo Y, Kim J, Lee Y, Lee H, Yong D, Choi JR, et al. Prevalence and genetic analysis of resistance mechanisms of linezolid-nonsusceptible enterococci in a tertiary care hospital examined via whole-genome sequencing. Antibiotics. 2022 Nov;11(11):1624. https://doi.org/10.3390/antibiotics11111624
Hua R, Xia Y, Wu W, Yang M, Yan J. Molecular epidemiology and mechanisms of 43 low-level linezolid-resistant Enterococcus faecalis strains in Chongqing, China. Ann Lab Med. 2019 Jan;39(1):36–42. https://doi.org/10.3343/alm.2019.39.1.36
Janjusevic A, Markovic Denic L, Minic R, Grgurevic A, Cirkovic I. Intestinal carriage of vancomycin-resistant Enterococcus spp. among high-risk patients in university hospitals in Serbia: Ffirst surveillance report. Ann Clin Microbiol Antimicrob. 2021 Mar;20(1):18. https://doi.org/10.1186/s12941-021-00423-0
Jung YH, Cha MH, Woo GJ, Chi YM. Characterization of oxazolidinone and phenicol resistance genes in non-clinical enterococcal isolates from Korea. J Glob Antimicrob Resist. 2021 Mar;24:363–369. https://doi.org/10.1016/j.jgar.2021.01.009
Kaas RS, Leekitcharoenphon P, Aarestrup FM, Lund O. Solving the problem of comparing whole bacterial genomes across different sequencing platforms. PLoS One. 2014 Aug;9(8):e104984. https://doi.org/10.1371/journal. pone.0104984
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol. 2018 Jun;35(6):1547–1549. https://doi.org/10.1093/molbev/msy096
Lei CW, Chen X, Liu SY, Li TY, Chen Y, Wang HN. Clonal spread and horizontal transfer mediate dissemination of phenicol-oxazolidinone-tetracycline resistance gene poxtA in enterococci isolates from a swine farm in China. Vet Microbiol. 2021 Nov;262:109219. https://doi.org/10.1016/j.vetmic.2021.109219
Li D, Li XY, Schwarz S, Yang M, Zhang SM, Hao W, Du XD. Tn6674 is a novel enterococcal optrA-carrying multiresistance transposon of the Tn554 family. Antimicrob Agents Chemother. 2019 Aug;63(9):e00809-19. https://doi.org/10.1128/aac.00809-19
Liu S, Yang X, Li R, Wang S, Han Z, Yang M, Zhang Y. IS6 family insertion sequences promote optrA dissemination between plasmids varying in transfer abilities. Appl Microbiol Biotechnol. 2024 Dec;108(1):132. https://doi.org/10.1007/s00253-023-12858-w
Ma X, Zhang F, Bai B, Lin Z, Xu G, Chen Z, Sun X, Zheng J, Deng Q, Yu Z. Linezolid resistance in Enterococcus faecalis associated with urinary tract infections of patients in a tertiary hospitals in China: Resistance mechanisms, virulence, and risk factors. Front Public Health. 2021 Feb;9:570650. https://doi.org/10.3389/fpubh.2021.570650
Mendes RE, Deshpande L, Streit JM, Sader HS, Castanheira M, Hogan PA, Flamm RK. ZAAPS programme results for 2016: An activity and spectrum analysis of linezolid using clinical isolates from medical centres in 42 countries. J Antimicrob Chemother. 2018 Jul;73(7):1880–1887. https://doi.org/10.1093/jac/dky099
Nüesch-Inderbinen M, Raschle S, Stevens MJA, Schmitt K, Stephan R. Linezolid-resistant Enterococcus faecalis ST16 harbouring optrA on a Tn6674-like element isolated from surface water. J Glob Antimicrob Resist. 2021 Jun;25:89–92. https://doi.org/10.1016/j.jgar.2021.02.029
Park K, Jeong YS, Chang J, Sung H, Kim MN. Emergence of optrA-mediated linezolid-nonsusceptible Enterococcus faecalis in a tertiary care hospital. Ann Lab Med. 2020 Jul;40(4):321–325. https://doi.org/10.3343/alm.2020.40.4.321
Roy S, Aung MS, Paul SK, Ahmed S, Haque N, Khan ER, Barman TK, Islam A, Abedin S, Sultana C, et al. Drug resistance determinants in clinical isolates of Enterococcus faecalis in Bangladesh: Identification of oxazolidinone resistance gene optrA in ST59 and ST902 lineages. Microorganisms. 2020 Aug;8(8):1240. https://doi.org/10.3390/microorganisms8081240
Ruiz-Ripa L, Feßler AT, Hanke D, Eichhorn I, Azcona-Gutiérrez JM, Pérez-Moreno MO, Seral C, Aspiroz C, Alonso CA, Torres L, et al. Mechanisms of linezolid resistance among enterococci of clinical origin in Spain – detection of optrA-and cfr(D)-carrying E. faecalis. Microorganisms. 2020 Jul;8(8):1155. https://doi.org/10.3390/microorganisms8081155
Sadowy E. Linezolid resistance genes and genetic elements enhancing their dissemination in enterococci and streptococci. Plasmid. 2018 Sep;99:89–98. https://doi.org/10.1016/j.plasmid.2018.09.011
Sassi M, Guérin F, Zouari A, Beyrouthy R, Auzou M, Fines-Guyon M, Potrel S, Dejoies L, Collet A, Boukthir S, et al. Emergence of optrA-mediated linezolid resistance in enterococci from France, 2006–16. J Antimicrob Chemother. 2019 Jun;74(6):1469–1472. https://doi.org/10.1093/jac/dkz097
Schwarz S, Zhang W, Du XD, Krüger H, Feßler AT, Ma S, Zhu Y, Wu C, Shen J, Wang Y. Mobile oxazolidinone resistance genes in Gram-positive and Gram-negative bacteria. Clin Microbiol Rev. 2021 Jun;34(3):e0018820. https://doi.org/10.1128/cmr.00188-20
Shang Y, Li D, Shan X, Schwarz S, Zhang SM, Chen YX, Ouyang W, Du XD. Analysis of two pheromone-responsive conjugative multiresistance plasmids carrying the novel mobile optrA locus from Enterococcus faecalis. Infect Drug Resist. 2019 Aug;12:2355–2362. https://doi.org/10.2147/idr.s206295
Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EP, de la Cruz F. Mobility of plasmids. Microbiol Mol Biol Rev. 2010 Sep;74(3):434–452. https://doi.org/10.1128/mmbr.00020-10
Tamang MD, Moon DC, Kim SR, Kang HY, Lee K, Nam HM, Jang GC, Lee HS, Jung SC, Lim SK. Detection of novel oxazolidinone and phenicol resistance gene optrA in enterococcal isolates from food animals and animal carcasses. Vet Microbiol. 2017 Mar; 201:252–256. https://doi.org/10.1016/j.vetmic.2017.01.035
Wang Y, Li X, Fu Y, Chen Y, Wang Y, Ye D, Wang C, Hu X, Zhou L, Du J, et al. Association of florfenicol residues with the abundance of oxazolidinone resistance genes in livestock manures. J Hazard Mater. 2020 Nov;399:123059. https://doi.org/10.1016/j.jhazmat.2020.123059
Wang Y, Lv Y, Cai J, Schwarz S, Cui L, Hu Z, Zhang R, Li J, Zhao Q, He T, et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J Antimicrob Chemother. 2015 Aug;70(8):2182–2190. https://doi.org/10.1093/jac/dkv116
Weiner-Lastinger LM, Abner S, Edwards JR, Kallen AJ, Karlsson M, Magill SS, Pollock D, See I, Soe MM, Walters MS, et al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect Control Hosp Epidemiol. 2020 Jan;41(1):1–18. https://doi.org/10.1017/ice.2019.296
Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, Edwards JR, Sievert DM. Antimicrobial-resistant pathogens associated with healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol. 2016 Nov;37(11):1288–1301. https://doi.org/10.1017/ice.2016.174
Zhang Y, Dong G, Li J, Chen L, Liu H, Bi W, Lu H, Zhou T. A high incidence and coexistence of multiresistance genes cfr and optrA among linezolid-resistant enterococci isolated from a teaching hospital in Wenzhou, China. Eur J Clin Microbiol Infect Dis. 2018 Aug; 37(8):1441–1448. https://doi.org/10.1007/s10096-018-3269-8
Zhou W, Gao S, Xu H, Zhang Z, Chen F, Shen H, Zhang C. Distribution of the optrA gene in Enterococcus isolates at a tertiary care hospital in China. J Glob Antimicrob Resist. 2019 Jun;17:180–186. https://doi.org/10.1016/j.jgar.2019.01.001
ZhouWGaoSXuHZhangZChenFShenHZhangC.Distribution of the optrA gene in Enterococcus isolates at a tertiary care hospital in China.J Glob Antimicrob Resist.2019Jun;17:180–186.https://doi.org/10.1016/j.jgar.2019.01.001