Have a personal or library account? Click to login
Guanylate-Binding Protein 1 (GBP1) Enhances IFN-α Mediated Antiviral Activity against Hepatitis B Virus Infection Cover

Guanylate-Binding Protein 1 (GBP1) Enhances IFN-α Mediated Antiviral Activity against Hepatitis B Virus Infection

Open Access
|Jun 2024

References

  1. Adasme MF, Linnemann KL, Bolz SN, Kaiser F, Salentin S, Haupt VJ, Schroeder M. PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021;49(W1):W530–W534. https://doi.org/10.1093/nar/gkab294
  2. Anderson SL, Carton JM, Lou J, Xing L, Rubin BY. Interferon-induced guanylate binding protein-1 (GBP-1) mediates an antiviral effect against vesicular stomatitis virus and encephalomyocarditis virus. Virology. 1999;256(1):8–14. https://doi.org/10.1006/viro.1999.9614
  3. Blanchet M, Sureau C. Analysis of the cytosolic domains of the hepatitis B virus envelope proteins for their function in viral particle assembly and infectivity. J Virol. 2006;80(24):11935–11945. https://doi.org/10.1128/JVI.00621-06
  4. Block TM, Guo H, Guo JT. Molecular virology of hepatitis B virus for clinicians. Clin Liver Dis. 2007;11(4):685–706. https://doi.org/10.1016/j.cld.2007.08.002
  5. Bruss V, Ganem D. The role of envelope proteins in hepatitis B virus assembly. Proc Natl Acad Sci USA. 1991;88(3):1059–1063. https://doi.org/10.1073/pnas.88.3.1059
  6. Dickinson MS, Kutsch M, Sistemich L, Hernandez D, Piro AS, Needham D, Lesser CF, Herrmann C, Coers J. LPS-aggregating proteins GBP1 and GBP2 are each sufficient to enhance caspase-4 activation both in cellulo and in vitro. Proc Natl Acad Sci USA. 2023;120(15):e2216028120. https://doi.org/10.1073/pnas.2216028120
  7. Du Y, Broering R, Li X, Zhang X, Liu J, Yang D, Lu M. In vivo mouse models for hepatitis B virus infection and their application. Front Immunol. 2021;12:766534. https://doi.org/10.3389/fimmu.2021.766534
  8. Feng S, Enosi Tuipulotu D, Pandey A, Jing W, Shen C, Ngo C, Tessema MB, Li FJ, Fox D, Mathur A, et al. Pathogen-selective killing by guanylate-binding proteins as a molecular mechanism leading to inflammasome signaling. Nat Commun. 2022;13(1):4395. https://doi.org/10.1038/s41467-022-32127-0
  9. Fisch D, Bando H, Clough B, Hornung V, Yamamoto M, Shenoy AR, Frickel EM. Human GBP1 is a microbe-specific gatekeeper of macrophage apoptosis and pyroptosis. EMBO J. 2019;38(13):e100926. https://doi.org/10.15252/embj.2018100926
  10. Ge GH, Ye Y, Zhou XB, Chen L, He C, Wen DF, Tan YW. Hepatitis B surface antigen levels of cessation of nucleos(t)ide analogs associated with virological relapse in hepatitis B surface antigennegative chronic hepatitis B patients. World J Gastroenterol. 2015;21(28):8653–8659. https://doi.org/10.3748/wjg.v21.i28.8653
  11. Glitscher M, Himmelsbach K, Woytinek K, Schollmeier A, Johne R, Praefcke GJK, Hildt E. Identification of the interferon-inducible GTPase GBP1 as major restriction factor for the Hepatitis E virus. J Virol. 2021;95(7):e01564–20. https://doi.org/10.1128/JVI.01564-20
  12. Honkala AT, Tailor D, Malhotra SV. Guanylate-binding protein 1: An emerging target in inflammation and cancer. Front Immunol. 2020;10:3139. https://doi.org/10.3389/fimmu.2019.03139
  13. Huang D, Wu D, Wang P, Wang Y, Yuan W, Hu D, Hu J, Wang Y, Tao R, Xiao F, Zhang X, Wang X, Han M, Luo X, Yan W, Ning Q. End-of-treatment HBcrAg and HBsAb levels identify durable functional cure after Peg-IFN-based therapy in patients with CHB. J Hepatol. 2022;77(1):42–54. https://doi.org/10.1016/j.jhep.2022.01.021
  14. Islam M, Kumar K, Sevak JK, Jindal A, Vyas AK, Ramakrishna G, Kottilil S, Sharma MK, Sarin SK, Trehanpati N. Immune drivers of HBsAg loss in HBeAg-negative CHB patients after stopping nucleotide analog and administration of Peg-IFN. Hepatol Commun. 2023;7(5):e0098. https://doi.org/10.1097/HC9.0000000000000098
  15. Itsui Y, Sakamoto N, Kakinuma S, Nakagawa M, Sekine-Osajima Y, Tasaka-Fujita M, Nishimura-Sakurai Y, Suda G, Karakama Y, Mishima K, et al. Antiviral effects of the interferon-induced protein guanylate binding protein 1 and its interaction with the hepatitis C virus NS5B protein. Hepatology. 2009;50(6):1727–1737. https://doi.org/10.1002/hep.23195
  16. Lebossé F, Testoni B, Fresquet J, Facchetti F, Galmozzi E, Fournier M, Hervieu V, Berthillon P, Berby F, Bordes I, et al. Intrahepatic innate immune response pathways are downregulated in untreated chronic hepatitis B. J Hepatol. 2017;66(5):897–909. https://doi.org/10.1016/j.jhep.2016.12.024
  17. Li LF, Yu J, Li Y, Wang J, Li S, Zhang L, Xia SL, Yang Q, Wang X, Yu S, et al. Guanylate-binding protein 1, an interferon-induced GTPase, exerts an antiviral activity against classical swine fever virus depending on its GTPase activity. J Virol. 2016;90(9):4412–4426. https://doi.org/10.1128/JVI.02718-15
  18. Li P, Jiang W, Yu Q, Liu W, Zhou P, Li J, Xu J, Xu B, Wang F, Shao F. Ubiquitination and degradation of GBPs by a Shigella effector to suppress host defence. Nature. 2017;551(7680):378–383. https://doi.org/10.1038/nature24467
  19. Lin N, Wang L, Guo Z, Guo S, Liu C, Lin J, Wu S, Xu S, Guo H, Fang F, et al. miR-548c-3p targets TRIM22 to attenuate the Peg-IFN-α therapeutic efficacy in HBeAg-positive patients with chronic hepatitis B. Antiviral Res. 2023;213:105584. https://doi.org/10.1016/j.antiviral.2023.105584
  20. Liu J, Wang T, Zhang W, Cheng Y, He Q, Wang FS. Effect of combination treatment based on interferon and nucleos(t)ide analogues on functional cure of chronic hepatitis B: A systematic review and meta-analysis. Hepatol Int. 2020;14(6):958–972. https://doi.org/10.1007/s12072-020-10099-x
  21. Mariappan V, Adikari S, Shanmugam L, Easow JM, Balakrishna Pillai A. Differential expression of interferon inducible protein: Guanylate binding protein (GBP1 and GBP2) in severe dengue. Free Radic Biol Med. 2023;194:131–146. https://doi.org/10.1016/j.freeradbiomed.2022.11.037
  22. Mirpuri J, Brazil JC, Berardinelli AJ, Nasr TR, Cooper K, Schnoor M, Lin PW, Parkos CA, Louis NA. Commensal Escherichia coli reduces epithelial apoptosis through IFN-αA-mediated induction of guanylate binding protein-1 in human and murine models of developing intestine. J Immunol. 2010;184(12):7186–7195. https://doi.org/10.4049/jimmunol.0903116
  23. Mohammadi N, Lindgren H, Golovliov I, Eneslätt K, Yamamoto M, Martin A, Henry T, Sjöstedt A. Guanylate-binding proteins are critical for effective control of Francisella tularensis strains in a mouse co-culture system of adaptive immunity. Front Cell Infect Microbiol. 2020;10:594063. https://doi.org/10.3389/fcimb.2020.594063
  24. Mutz P, Metz P, Lempp FA, Bender S, Qu B, Schöneweis K, Seitz S, Tu T, Restuccia A, Frankish J, et al. HBV bypasses the innate immune response and does not protect HCV from antiviral activity of interferon. Gastroenterology. 2018;154(6):1791–1804.e22. https://doi.org/10.1053/j.gastro.2018.01.044
  25. Nguyen MH, Wong G, Gane E, Kao JH, Dusheiko G. Hepatitis B virus: Advances in prevention, diagnosis, and therapy. Clin Microbiol Rev. 2020;33(2):e00046-19. https://doi.org/10.1128/CMR.00046-19
  26. Nordmann A, Wixler L, Boergeling Y, Wixler V, Ludwig S. A new splice variant of the human guanylate-binding protein 3 mediates anti-influenza activity through inhibition of viral transcription and replication. FASEB J. 2012;26(3):1290–1300. https://doi.org/10.1096/fj.11-189886
  27. Pan W, Zuo X, Feng T, Shi X, Dai J. Guanylate-binding protein 1 participates in cellular antiviral response to dengue virus. Virol J. 2012;9:292. https://doi.org/10.1186/1743-422X-9-292
  28. Piratvisuth T, Marcellin P, Popescu M, Kapprell HP, Rothe V, Lu ZM. Hepatitis B surface antigen: Association with sustained response to peginterferon alfa-2a in hepatitis B e antigen-positive patients. Hepatol Int. 2013;7(2):429–436. https://doi.org/10.1007/s12072-011-9280-0
  29. Prakash B, Praefcke GJ, Renault L, Wittinghofer A, Herrmann C. Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins. Nature. 2000;403(6769):567–571. https://doi.org/10.1038/35000617
  30. Raninga N, Nayeem SM, Gupta S, Mullick R, Pandita E, Das S, Deep S, Sau AK. Stimulation of GMP formation in hGBP1 is mediated by W79 and its effect on the antiviral activity. FEBS J. 2021;288(9):2970–2988. https://doi.org/10.1111/febs.15611
  31. Ren JH, Hu JL, Cheng ST, Yu HB, Wong VKW, Law BYK, Yang YF, Huang Y, Liu Y, Chen WX, et al. SIRT3 restricts hepatitis B virus transcription and replication through epigenetic regulation of covalently closed circular DNA involving suppressor of variegation 3–9 homolog 1 and SET domain containing 1A histone methyltransferases. Hepatology. 2018;68(4):1260–1276. https://doi.org/10.1002/hep.29912
  32. Salerno D, Chiodo L, Alfano V, Floriot O, Cottone G, Paturel A, Pallocca M, Plissonnier ML, Jeddari S, Belloni L, et al. Hepatitis B protein HBx binds the DLEU2 lncRNA to sustain cccDNA and host cancer-related gene transcription. Gut. 2020;69(11):2016–2024. https://doi.org/10.1136/gutjnl-2019-319637
  33. Santos JC, Boucher D, Schneider LK, Demarco B, Dilucca M, Shkarina K, Heilig R, Chen KW, Lim RYH, Broz P. Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria. Nat Commun. 2020;11(1):3276. https://doi.org/10.1038/s41467-020-16889-z
  34. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature. 2011;472(7344):481–485. https://doi.org/10.1038/nature09907
  35. Sen GC, Peters GA. Viral stress-inducible genes. Adv Virus Res. 2007;70:233–263. https://doi.org/10.1016/S0065-3527(07)70006-4
  36. Shih C, Yang CC, Choijilsuren G, Chang CH, Liou AT. Hepatitis B virus. Trends Microbiol. 2018;26(4):386–387. https://doi.org/10.1016/j.tim.2018.01.009
  37. Suslov A, Boldanova T, Wang X, Wieland S, Heim MH. Hepatitis B virus does not interfere with innate immune responses in the human liver. Gastroenterology. 2018;154(6):1778–1790. https://doi.org/10.1053/j.gastro.2018.01.034
  38. Tessema MB, Tuipulotu DE, Oates CV, Brooks AG, Man SM, Londrigan SL, Reading PC. Mouse guanylate-binding protein 1 does not mediate antiviral activity against influenza virus in vitro or in vivo. Immunol Cell Biol. 2023;101(5):383–396. https://doi.org/10.1111/imcb.12627
  39. Thompson AJ, Nguyen T, Iser D, Ayres A, Jackson K, Littlejohn M, Slavin J, Bowden S, Gane EJ, Abbott W, et al. Serum hepatitis B surface antigen and hepatitis B e antigen titers: Disease phase influences correlation with viral load and intrahepatic hepatitis B virus markers. Hepatology. 2010;51(6):1933–44. https://doi.org/10.1002/hep.23571
  40. Tretina K, Park ES, Maminska A, MacMicking JD. Interferon-induced guanylate-binding proteins: Guardians of host defense in health and disease. J Exp Med. 2019;216(3):482–500. https://doi.org/10.1084/jem.20182031
  41. Tseng TN, Hu TH, Wang JH, Kuo YH, Hung CH, Lu SN, Jeng WJ, Chen CH. Incidence and factors associated with HBV relapse after cessation of entecavir or tenofovir in patients with HBsAg below 100 IU/ml. Clin Gastroenterol Hepatol. 2020;18(12):2803–2812.e2. https://doi.org/10.1016/j.cgh.2020.04.037
  42. Tseng TN, Kuo YH, Hu TH, Hung CH, Wang JH, Lu SN, Chen CH. Kinetics in HBsAg after stopping entecavir or tenofovir in patients with virological relapse but not clinical relapse. Viruses. 2022;14(6):1189. https://doi.org/10.3390/v14061189
  43. UniProt Consortium. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023;51(D1):D523–D531. https://doi.org/10.1093/nar/gkac1052
  44. Viganò M, Grossi G, Loglio A, Lampertico P. Treatment of hepatitis B: Is there still a role for interferon? Liver Int. 2018;38(Suppl_1):79–83. https://doi.org/10.1111/liv. 13635
  45. Wong GLH, Gane E, Lok ASF. How to achieve functional cure of HBV: Stopping NUCs, adding interferon or new drug development? J Hepatol. 2022;76(6):1249–1262. https://doi.org/10.1016/j.jhep.2021.11.024
  46. Wu D, Wang P, Han M, Chen Y, Chen X, Xia Q, Yan W, Wan X, Zhu C, Xie Q, et al. Sequential combination therapy with interferon, interleukin-2 and therapeutic vaccine in entecavir-suppressed chronic hepatitis B patients: The Endeavor study. Hepatol Int. 2019;13(5):573–586. https://doi.org/10.1007/s12072-019-09956-1
  47. Xu S, Huang J, Xun Z, Li S, Fu Y, Lin N, Wu W, Chen T, Liu C, Ou Q. IFIT3 is increased in serum from patients with chronic hepatitis B virus (HBV) infection and promotes the anti-HBV effect of interferon alpha via JAK-STAT2 in vitro. Microbiol Spectr. 2022;10(6):e0155722. https://doi.org/10.1128/spectrum.01557-22
  48. Yuen MF, Chen DS, Dusheiko GM, Janssen HLA, Lau DTY, Locarnini SA, Peters MG, Lai CL. Hepatitis B virus infection. Nat Rev Dis Primers. 2018;4:18035. https://doi.org/10.1038/nrdp.2018.35
  49. Yuen MF, Heo J, Jang JW, Yoon JH, Kweon YO, Park SJ, Tami Y, You S, Yates P, Tao Y, et al. Safety, tolerability and antiviral activity of the antisense oligonucleotide bepirovirsen in patients with chronic hepatitis B: A phase 2 randomized controlled trial. Nat Med. 2021;27(10):1725–1734. https://doi.org/10.1038/s41591-021-01513-4
  50. Yuen MF, Lim SG, Plesniak R, Tsuji K, Janssen HLA, Pojoga C, Gadano A, Popescu CP, Stepanova T, Asselah T, et al.; B-Clear Study Group. Efficacy and safety of bepirovirsen in chronic hepatitis B infection. N Engl J Med. 2022;387(21):1957–1968. https://doi.org/10.1056/NEJMoa2210027
  51. Zhang R, Li Z, Tang YD, Su C, Zheng C. When human guanylate-binding proteins meet viral infections. J Biomed Sci. 2021;28(1):17. https://doi.org/10.1186/s12929-021-00716-8
DOI: https://doi.org/10.33073/pjm-2024-021 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 217 - 235
Submitted on: Feb 7, 2024
Accepted on: May 8, 2024
Published on: Jun 20, 2024
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Yadi Li, Haiying Luo, Xiaoxia Hu, Jiaojiao Gong, Guili Tan, Huating Luo, Rui Wang, Hao Pang, Renjie Yu, Bo Qin, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.