Have a personal or library account? Click to login
Purification and Characterization of a Small Thermostable Protease from Streptomyces sp. CNXK100 Cover

Purification and Characterization of a Small Thermostable Protease from Streptomyces sp. CNXK100

Open Access
|Apr 2024

References

  1. Ahn J, Cao MJ, Yu YQ, Engen JR. Accessing the reproducibility and specificity of pepsin and other aspartic proteases. Biochim Biophys Acta Proteins Proteomics. 2013;1834(6):1222–1229. https://doi.org/10.1016/j.bbapap.2012.10.003
  2. Aksoy SÇ, Uzel A, Hameş Kocabaş E. Extracellular serine proteases produced by Thermoactinomyces strains from hot springs and soils of West Anatolia. Ann Microbiol. 2012;62:483–492. https://doi.org/10.1007/s13213-011-0280-z
  3. Al-Askar AA, Rashad YM, Hafez EE, Abdulkhair WM, Baka ZA, Ghoneem KM. Characterization of alkaline protease produced by Streptomyces griseorubens E44G and its possibility for controlling Rhizoctonia root rot disease of corn. Biotechnol Biotechnol Equip. 2015;29(3):457–462. https://doi.org/10.1080/13102818.2015.1015446
  4. Al-Dhabi NA, Ali Esmail G, Mohammed Ghilan AK, Valan Arasu M, Duraipandiyan V, Ponmurugan K. Characterization and fermentation optimization of novel thermo stable alkaline protease from Streptomyces sp. Al-Dhabi-82 from the Saudi Arabian environment for eco-friendly and industrial applications. J King Saud Univ Sci. 2020b;32(1):1258–1264. https://doi.org/10.1016/j.jksus.2019.11.011
  5. Al-Dhabi NA, Esmail GA, Ghilan A-KM, Arasu MV. Isolation and screening of Streptomyces sp. Al-Dhabi-49 from the environment of Saudi Arabia with concomitant production of lipase and protease in submerged fermentation. Saudi J Biol Sci. 2020a;27(1):474–479. https://doi.org/10.1016/j.sjbs.2019.11.011
  6. Anson ML. The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin. J Gen Physiol. 1938;22(1):79–89. https://doi.org/10.1085/jgp.22.1.79
  7. Ben Elhoul M, Zaraî Jaouadi N, Rekik H, Bejar W, Boulkour Touioui S, Hmidi M, Badis A, Bejar S, Jaouadi B. A novel detergent-stable solvent-tolerant serine thiol alkaline protease from Streptomyces koyangensis TN650. Int J Biol Macromol. 2015;79:871–882. https://doi.org/10.1016/j.ijbiomac.2015.06.006
  8. Bose U, Howitt CA, Colgrave ML. Proteases as digestive aids. In: Melton L, Shahidi F, Varelis P, editors. Encyclopedia of food chemistry. Oxford (UK): Academic Press; 2019. p. 314–321. https://doi.org/10.1016/B978-0-08-100596-5.22466-9
  9. Boughachiche F, Rachedi K, Zerizer H, Duran R, Karama S, Biaci M, Aknouche Z, Bouchina S, Boulahrouf A. Production of protease on wheat bran by a newly isolated Streptomyces sp. under solid state fermentation. J Bio-Sci. 2021;29(1):33–48. https://doi.org/10.3329/jbs.v29i0.54820
  10. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem. 1976;72(1–2):248–254. https://doi.org/10.1006/abio.1976.9999
  11. Cheng G, He L, Sun Z, Cui Z, Du Y, Kong Y. Purification and biochemical characterization of a novel fibrinolytic enzyme from Streptomyces sp. P3. J Microbiol Biotechnol. 2015;25(9):1449–1459. https://doi.org/10.4014/jmb.1503.03015
  12. Dhamodharan D, Jemimah NS, Merlyn KS, Subathra DC. Novel fibrinolytic protease producing Streptomyces radiopugnans VITSD8 from marine sponges. Mar Drugs. 2019;17(3):164. https://doi.org/10.3390/md17030164
  13. El-Khonezy MI, El-Gammal EW, Atwa NA, El-Abd MA. Partial purification and characterization of an alkaline serine protease produced by Streptomyces griseus NCRRT and its antifungal effect on Fusarium solani. World Appl Sci J. 2015;33(5):831–842. https://doi.org/10.5829/idosi.wasj.2015.33.05.14588
  14. Ghorbel S, Kammoun M, Soltana H, Nasri M, Hmidet N. Streptomyces flavogriseus HS1: Isolation and characterization of extracellular proteases and their compatibility with laundry detergents. Biomed Res Int. 2014;2014:345980. https://doi.org/10.1155/2014/345980
  15. Gohel SD, Singh SP. Characteristics and thermodynamics of a thermostable protease from a salt-tolerant alkaliphilic actinomycete. Int J Biol Macromol. 2013;56:20–27. https://doi.org/10.1016/j.ijbiomac.2013.01.028
  16. Gurumallesh P, Alagu K, Ramakrishnan B, Muthusamy S. A systematic reconsideration on proteases. Int J Biol Macromol. 2019; 128:254–267 https://doi.org/10.1016/j.ijbiomac.2019.01.081
  17. He Z, Sun Y, Chu M, Zhu J, Zhang Y, Tang Q, Osman G, Jiang L, Zhang Z. Screening of a novel fibrinolytic enzyme-producing Streptomyces from a hyper-arid area and optimization of its fibrinolytic enzyme production. Fermentation. 2023;9(5):410. https://doi.org/10.3390/fermentation9050410
  18. Hussian CHAC, Leong WY. Thermostable enzyme research advances: A bibliometric analysis. J Genet Eng Biotechnol. 2023;21(1):37. https://doi.org/10.1186/s43141-023-00494-w
  19. Kotb E, Alabdalall AH, Alsayed MA, Alghamdi AI, Alkhaldi E, AbdulAzeez S, Borgio JF. Isolation, screening, and identification of alkaline protease-producing bacteria and application of the most potent enzyme from Bacillus sp. Mar64. Fermentation. 2023;9(7):637. https://doi.org/10.3390/fermentation9070637
  20. Mane M, Mahadikand K, Kokare C. Purification, characterization and applications of thermostable alkaline protease from marine Streptomyces sp. D1. Int J Pharma Bio Sci. 2013;4(1):572–582.
  21. Mechri S, Bouacem K, Chalbi TB, Khaled M, Allala F, Darenfed AB, Hacene H, Jaouadi B. A Taguchi design approach for the enhancement of a detergent-biocompatible alkaline thermostable protease production by Streptomyces mutabilis strain TN-X30. J Surfactants Deterg. 2022;25(4):487–504. https://doi.org/10.1002/jsde.12583
  22. Mostafa EE, Saad MM, Hassan HM, Zeidan EH. Purification and characterization of alkaline protease produced by Streptomyces flavogriseus and its application as a biocontrol agent for plant pathogens. Egypt Pharm J. 2019;18(4):332–340. https://doi.org/10.4103/epj.epj_1_19
  23. Mótyán JA, Tóth F, Tőzsér J. Research applications of proteolytic enzymes in molecular biology. Biomolecules. 2013;3(4):923–942. https://doi.org/10.3390/biom3040923
  24. Parthasarathy M, Gnanadoss JJ. Purification and characterization of extracellular alkaline protease from Streptomyces sp. LCJ12A isolated from Pichavaram mangroves. J Appl Biol Biotechnol. 2020; 8(1):15–20. https://doi.org/10.7324/JABB.2020.80103
  25. Rao PS, Bajaj R, Mann B. Impact of sequential enzymatic hydrolysis on antioxidant activity and peptide profile of casein hydrolysate. J Food Sci Technol. 2020;57(12):4562–4575. https://doi.org/10.1007/s13197-020-04495-2
  26. Sarkar G, Suthindhiran K. Extraction and characterization of alkaline protease from Streptomyces sp. GS-1 and its application as dehairing agent. Biocatal Agric Biotechnol. 2020;25:101590. https://doi.org/10.1016/j.bcab.2020.101590
  27. Sharma S, Vaid S, Bhat B, Singh S, Bajaj BK. Thermostable enzymes for industrial biotechnology. In: Singh RS, Singhania RR, Pandey A, Larroche C, editors. Advances in enzyme technology. Amsterdam (The Netherlands): Elsevier; 2019; p. 469–495. https://doi.org/10.1016/B978-0-444-64114-4.00017-0
  28. Simkhada JR, Cho SS, Park SJ, Mander P, Choi YH, Lee HJ, Yoo JC. An oxidant- and organic solvent-resistant alkaline metalloprotease from Streptomyces livochromogenes. Appl Biochem Biotechnol. 2010;162(5):1457–1470. https://doi.org/10.1007/s12010-010-8925-0
  29. Singh AK, Chhatpar HS. Purification, characterization and thermodynamics of antifungal protease from Streptomyces sp. A6. J Basic Microbiol. 2011;51(4):424–432. https://doi.org/10.1002/jobm.201000310
  30. Singh R, Kumar M, Mittal A, Mehta PK. Microbial enzymes: industrial progress in 21st century. 3 Biotech. 2016;6(2):174. https://doi.org/10.1007/s13205-016-0485-8
  31. Singh S, Bajaj BK. Potential application spectrum of microbial proteases for clean and green industrial production. Energ Ecol Environ. 2017;2(6):370–386. https://doi.org/10.1007/s40974-017-0076-5
  32. Šnajder M, Rincón AFC, Magdevska V, Bahun M, Kranjc L, Paš M, Juntes P, Petkovic H, Ulrih NP. Extracellular production of the engineered thermostable protease pernisine from Aeropyrum pernix K1 in Streptomyces rimosus. Microb Cell Fact. 2019;18(1):196. https://doi.org/10.1186/s12934-019-1245-3
  33. Spasic J, Mandic M, Djokic L, Runic JN. Streptomyces spp. in the biocatalysis toolbox. Appl Microbiol Biotechnol. 2018;102(8):3513–3536. https://doi.org/10.1007/s00253-018-8884-x
  34. Synowiecki J. Some applications of thermophiles and their enzymes for protein processing. Afr J Biotechnol. 2010;9(42):7020–7025. https://doi.org/10.5897/AJB10.966
  35. Tarek H, Nam KB, Kim YK, Suchi SA, Yoo JC. Biochemical characterization and application of a detergent stable, antimicrobial and antibiofilm potential protease from Bacillus siamensis. Int J Mol Sci. 2023;24(6):57–74. https://doi.org/10.3390/ijms24065774
  36. Thumar J, Singh SP. Two-step purification of a highly thermostable alkaline protease from salt-tolerant alkaliphilic Streptomyces clavuligerus strain Mit-1. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;854(1–2):198–203. https://doi.org/10.1016/j.jchromb.2007.04.023
  37. Touioui SB, Jaouadi NZ, Boudjella H, Ferradji FZ, Belhoul M, Rekik H, Badis A, Bejar S, Jaouadi B. Purification and biochemical characterization of two detergent-stable serine alkaline proteases from Streptomyces sp. strain AH4. World J Microbiol Biotechnol. 2015;31(7):1079–1092. https://doi.org/10.1007/s11274-015-1858-6
  38. Tran TN, Doan CT, Nguyen VB, Nguyen AD, Wang SL. Conversion of fishery waste to proteases by Streptomyces speibonae and their application in antioxidant preparation. Fishes. 2022;7(3):140. https://doi.org/10.3390/fishes7030140
  39. Verma P, Chatterjee S, Keziah MS, Devi SC. Fibrinolytic protease from marine Streptomyces rubiginosus VITPSS1. Cardiovasc Hematol Agents Med Chem. 2018;16(1):44–55. https://doi.org/10.2174/1871525716666180226141551
  40. Vi DT, Chinh HT, Ân NN, Hanh NT, Viêt PT. [Characterization of two extracellular protease from Streptomyces] (in Vietnamese). J Sci Technol. 2023;62(02):75–83. https://doi.org/10.46242/jstiuh.v62i02.4784
  41. Vorob’ev MM. Proteolysis of β-lactoglobulin by trypsin: Simulation by two-step model and experimental verification by intrinsic tryptophan fluorescence. Symmetry. 2019;11(2):153. https://doi.org/10.3390/sym11020153
  42. Wang K, Tian Y, Zhou N, Liu D, Zhang D. Studies on fermentation optimization, stability and application of prolyl aminopeptidase from Bacillus subtilis. Process Biochem. 2018;74:10–20. https://doi.org/10.1016/j.procbio.2018.08.035
  43. Xin Y, Sun Z, Chen Q, Wang J, Wang Y, Luogong L, Li S, Dong W, Cui Z, Huang Y. Purification and characterization of a novel extracellular thermostable alkaline protease from Streptomyces sp. M30. J Microbiol Biotechnol. 2015;25(11):1944–1953. https://doi.org/10.4014/jmb.1507.07017
  44. Xu Z, Cen YK, Zou SP, Xue YP, Zheng YG. Recent advances in the improvement of enzyme thermostability by structure modification. Crit Rev Biotechnol. 2020;40(1):83–98. https://doi.org/10.1080/07388551.2019.1682963
  45. Zhou HX, Pang X. Electrostatic interactions in protein structure, folding, binding, and condensation. Chem Rev. 2018;118(4):1691–1741. https://doi.org/10.1021/acs.chemrev.7b00305
  46. Zhou L, Budge SM, Ghaly AE, Brooks MS, Dave D. Extraction, purification and characterization of fish chymotrypsin: A review. Am J Biochem Biotechnol. 2011;7(3):104–123. https://doi.org/10.3844/ajbbsp.2011.104.123
  47. Zilda DS, Harmayani E, Widada J, Asmara W, Irianto HE, Patantis G, Fawzya YN. Screening of thermostable protease producing microorganisms isolated from Indonesian hotspring. Squalen Bull. 2012;7(3):105–114. https://doi.org/10.15578/squalen.v7i3.5
DOI: https://doi.org/10.33073/pjm-2024-014 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 155 - 165
Submitted on: Dec 16, 2023
Accepted on: Mar 13, 2024
Published on: Apr 28, 2024
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Tan Viet Pham, Truong Chinh Hua, Ngoc An Nguyen, Hanh Thi Dieu Nguyen, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.