References
- Alfiky A, Weisskopf L. Deciphering Trichoderma-plant-pathogen interactions for better development of biocontrol applications. J Fungi (Basel). 2021 Jan;7(1):61. https://doi.org/10.3390/jof7010061
- Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000 May;25(1):25–29. https://doi.org/10.1038/75556
- Bai ZQ, Lin XP, Liu YH. [Research progress on the chemical constituents from the endophytic fungus Pestalotiopsis spp.] (in Chinese) Nat Prod Res Dev. 2013 May;25:706–715. https://doi.org/10.16333/j.1001-6880.2013.05.028
- Bao W, Kojima KK, Kohany O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 2015 Jun 2;6:11. https://doi.org/10.1186/s13100-015-0041-9
- Benson G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999 Jan;27(2):573–580. https://doi.org/10.1093/nar/27.2.573
- Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T. antiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019 Jul; 47(W1):W81–W87. https://doi.org/10.1093/nar/gkz310
- Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for Glycogenomics. Nucleic Acids Res. 2009 Jan; 37(suppl_1):D233–D238. https://doi.org/10.1093/nar/gkn663
- Chen Y, Chen Y, Shi C, Huang Z, Zhang Y, Li S, Li Y, Ye J, Yu C, Li Z, et al. SOAPnuke: A MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience. 2018 Jan;7(1):gix120. https://doi.org/10.1093/gigascience/gix120
- Crešnar B, Petrič S. Cytochrome P450 enzymes in the fungal kingdom. Biochim Biophys Acta. 2011 Jan;1814(1):29–35. https://doi.org/10.1016/j.bbapap.2010.06.020
- Cuomo CA, Güldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, Walton JD, Ma LJ, Baker SE, Rep M, et al. The Fusarium gramine-arum genome reveals a link between localized polymorphism and pathogen specialization. Science. 2007 Sep;317(5843):1400–1402. https://doi.org/10.1126/science.1143708
- Ding G, Jiang L, Guo L, Chen X, Zhang H, Che Y. Pestalazines and pestalamides, bioactive metabolites from the plant pathogenic fungus Pestalotiopsis theae. J Nat Prod. 2008 Nov;71(11):1861–1865. https://doi.org/10.1021/np800357g
- Dutta S, Whicher JR, Hansen DA, Hale WA, Chemler JA, Congdon GR, Narayan AR, Håkansson K, Sherman DH, Smith JL, et al. Structure of a modular polyketide synthase. Nature. 2014 Jun; 510(7506):560–564. https://doi.org/10.1038/nature13423
- Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004 Mar;32(5): 1792–1797. https://doi.org/10.1093/nar/gkh340
- Fischbach MA, Walsh CT. Assembly-line enzymology for polyke-tide and nonribosomal Peptide antibiotics: Logic, machinery, and mechanisms. Chem Rev. 2006 Aug;106(8):3468–3496. https://doi.org/10.1021/cr0503097
- Gruber S, Seidl-Seiboth V. Self versus non-self: Fungal cell wall degradation in Trichoderma. Microbiology. 2012 Jan;158(1):26–34. https://doi.org/10.1099/mic.0.052613-0
- Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004 Jan;32(Suppl_1):D277–D280. https://doi.org/10.1093/nar/gkh063
- Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017 May; 27(5):722–736. https://doi.org/10.1101/gr.215087.116
- Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, et al. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol. 2011;12(4):R40. https://doi.org/10.1186/gb-2011-12-4-r40
- Letunic I, Bork P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018 Jan;46(D1):D493–D496. https://doi.org/10.1093/nar/gkx922
- Letunic I, Khedkar S, Bork P. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Res. 2021 Jan;49(D1): D458–D460 https://doi.org/10.1093/nar/gkaa937
- Li J, Liu FL, Cheng YH. Culture condition screening for toxin production of mycopa-rasites (Pestalotiopsis spp.) from Cronartium ribicola. Acta Agric Univ Jiangxiensis. 2017;39:395–401. https://doi.org/10.13836/j.jjau.2017051
- Li J, Xie J, Yang YH, Li XL, Zeng Y, Zhao PJ. Pestalpolyols A–D, cytotoxic polyketides from Pestalotiopsis sp. cr013. Planta Med. 2015 Sep;81(14):1285–1289. https://doi.org/10.1055/s-0035-1546257
- Li J, Yang YH, Zhou L, Cheng LJ, Chen YH. Destructive effects of a mycoparasite Trichoderma atroviride SS003 on aeciospores of Cronartium ribicola. J Phytopathol. 2014; 162(6):396–401. https://doi.org/10.1111/jph.12202
- Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Marchler GH, Song JS, et al. CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Res. 2020 Jan;48(D1):D265–D268. https://doi.org/10.1093/nar/gkz991
- Magrane M; UniProt Consortium. UniProt Knowledgebase: A hub of integrated protein data. Database. 2011 Mar;2011:bar009. https://doi.org/10.1093/database/bar009
- Maharachchikumbura SSN, Guo LD, Chukeatirote E, Bahkali A, Hyde KD. Pestalotiopsis – morphology, phylogeny, biochemistry and diversity. Fungal Diversity. 2011;50:167–187. https://doi.org/10.1007/s13225-011-0125-x
- Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol. 2008 May;26(5):553–560. https://doi.org/10.1038/nbt1403
- Seidl V, Song L, Lindquist E, Gruber S, Koptchinskiy A, Zeilinger S, Schmoll M, Martínez P, Sun J, Grigoriev I, et al. Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genomics. 2009 Nov;10:567. https://doi.org/10.1186/1471-2164-10-567
- Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015 Oct; 31(19):3210–3212. https://doi.org/10.1093/bioinformatics/btv351
- Suginta W, Sirimontree P, Sritho N, Ohnuma T, Fukamizo T. The chitin-binding domain of a GH-18 chitinase from Vibrio harveyi is crucial for chitin-chitinase interactions. Int J Biol Macromol. 2016 Dec;93(Pt A):1111–1117. https://doi.org/10.1016/j.ijbiomac.2016.09.066
- Sun Q, Jiang XL, Pang L, Wang LR, Li M. The genome sequence of Trichoderma harzianum Th-33. Chinese J Biol Control. 2016;32: 205–214. https://doi.org/10.16409/j.cnki.2095-039x.2016.02.011
- Tarailo-Graovac M, Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics. 2009 Mar;25(1):4.10.1–4.10.14. https://doi.org/10.1002/0471250953.bi0410s25
- Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, et al. The COG database: An updated version includes eukaryotes. BMC Bioinformatics. 2003 Sep;4:41. https://doi.org/10.1186/1471-2105-4-41
- Tzelepis GD, Melin P, Jensen DF, Stenlid J, Karlsson M. Functional analysis of glycoside hydrolase family 18 and 20 genes in Neurospora crassa. Fungal Genet Biol. 2012 Sep;49(9):717–730. https://doi.org/10.1016/j.fgb.2012.06.013
- van den Brink HM, van Gorcom RF, van den Hondel CA, Punt PJ. Cytochrome P450 enzyme systems in fungi. Fungal Genet Biol. 1998 Feb;23(1):1–17. https://doi.org/10.1006/fgbi.1997.1021
- Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014 Nov;9(11):e112963. https://doi.org/10.1371/journal.pone.0112963
- Wang X, Zhang X, Liu L, Xiang M, Wang W, Sun X, Che Y, Guo L, Liu G, Guo L, et al. Genomic and transcriptomic analysis of the endophytic fungus Pestalotiopsis fici reveals its lifestyle and high potential for synthesis of natural products. BMC Genomics. 2015 Jan;16(1):28. https://doi.org/10.1186/s12864-014-1190-9
- Wang Y, Zhu X, Wang J, Shen C, Wang W. Identification of myco-parasitism-related genes against the phytopathogen Botrytis cinerea via transcriptome analysis of Trichoderma harzianum T4. J Fungi. 2023 Mar;9(3):324. https://doi.org/10.3390/jof9030324
- Wei JG, Xu T, Guo LD, Liu AR, Zhang Y, Pan XH. Endophytic Pestalotiopsis species associated with plants of Podocarpaceae, Theaceae and Taxaceae in southern China. Fungal Diversity. 2007;24: 55–74.
- Xie J, Li J, Yang YH, Chen YH, Zhao PJ. Two new ambuic acid analogs from Pestalotiopsis sp. cr013. Phytochem Lett. 2014 Oct;10: 291–294. https://doi.org/10.1016/j.phytol.2014.10.002
- Xu J, Ebada S, Chaidir C. Pestalotiopsis a highly creative genus: Chemistry and bioactivity of secondary metabolites. Fungal Divers. 2010 Aug;44:15–31. https://doi.org/10.1007/s13225-010-0055-z
- Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007 Jul; 35(suppl_2):W265–W268. https://doi.org/10.1093/nar/gkm286
- Zhao Z, Liu H, Wang C, Xu JR. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics. 2013 Apr;14:274. https://doi.org/10.1186/1471-2164-14-274