References
- Bolten A, Schmidt V, Steinhauer K. Use of the European standardization framework established by CEN/TC 216 for effective disinfection strategies in human medicine, veterinary medicine, food hygiene, industry, and domestic and institutional use – a review. GMS Hyg Infect Control. 2022;17:Doc14. https://doi.org/10.3205/dgkh000417
- Boyce JM. Alcohols as surface disinfectants in healthcare settings. Infect Control Hosp Epidemiol. 2018 Mar;39(3):323–328. https://doi.org/10.1017/ice.2017.301
- Briggiler Marcó M, De Antoni GL, Reinheimer JA, Quiberoni A. Thermal, chemical, and photocatalytic inactivation of Lactobacillus plantarum bacteriophages. J Food Prot. 2009 May;72(5):1012–1019. https://doi.org/10.4315/0362-028X-72.5.1012
- Briggiler Marcó M, Suárez VB, Quiberoni A, Pujato SA. Inactivation of dairy bacteriophages by thermal and chemical treatments. Viruses. 2019 May;11(5):480. https://doi.org/10.3390/v11050480
- Cai W, Liu J, Zhang X, Ng WJ, Liu Y. Generation of dissolved organic matter and byproducts from activated sludge during contact with sodium hypochlorite and its implications to on-line chemical cleaning in MBR. Water Res. 2016 Nov;104:44–52. https://doi.org/10.1016/j.watres.2016.07.065
- Capra ML, Quiberoni A, Reinheimer J, Guglielmotti D. Bacteriophage | Biological aspects. In: Reference module in food science. Amsterdam (The Netherlands): Elsevier; 2018. https://doi.org/10.1016/B978-0-08-100596-5.00637-5
- Capra ML, Quiberoni A, Reinheimer JA. Thermal and chemical resistance of Lactobacillus casei and Lactobacillus paracasei bacteriophages. Lett Appl Microbiol. 2004;38(6):499–504. https://doi.org/10.1111/j.1472-765X.2004.01525.x
- Chen X, Guo J, Liu Y, Chai S, Ma R, Munguntsetseg B. Characterization and adsorption of a Lactobacillus plantarum virulent phage. J Dairy Sci. 2019 May;102(5):3879–3886. https://doi.org/10.3168/jds.2018-16019
- Chen X, Liu Y, Chai S, Guo J, Wu W. Inactivation of Lactobacillus virulent bacteriophage by thermal and chemical treatments. J Food Prot. 2018 Oct;81(10):1673–1678. https://doi.org/10.4315/0362-028X.JFP-18-168
- Chen X, Liu Y, Fan M, Wang Z, Wu W, Wang J. Thermal and chemical inactivation of Lactobacillus virulent bacteriophage. J Dairy Sci. 2017 Sep;100(9):7041–7050. https://doi.org/10.3168/jds.2016-12451
- Chen X, Xi Y, Zhang H, Wang Z, Fan M, Liu Y, Wu W. Characterization and adsorption of Lactobacillus virulent phage P1. J Dairy Sci. 2016 Sep;99(9):6995–7001. https://doi.org/10.3168/jds.2016-11332
- Cho M, Kim J, Kim JY, Yoon J, Kim JH. Mechanisms of Escherichia coli inactivation by several disinfectants. Water Res. 2010 Jun; 44(11):3410–3418. https://doi.org/10.1016/j.watres.2010.03.017
- Cooper CD, Addison-Smith I, Guzman HV. Quantitative electrostatic force tomography for virus capsids in interaction with an approaching nanoscale probe. Nanoscale. 2022 Sep;14(34):12232–12237. https://doi.org/10.1039/D2NR02526D
- Dilek Avsaroglu M, Buzrul S, Alpas H, Akcelik M. Hypochlorite inactivation kinetics of lactococcal bacteriophages. LWT – Food Sci Technol. 2007 Oct;40(8):1369–1375. https://doi.org/10.1016/j.lwt.2006.10.006
- Ebrecht AC, Guglielmotti DM, Tremmel G, Reinheimer JA, Suárez VB. Temperate and virulent Lactobacillus delbrueckii bacteriophages: Comparison of their thermal and chemical resistance. Food Microbiol. 2010 Jun;27(4):515–520. https://doi.org/10.1016/j.fm.2009.12.012
- Guglielmotti DM, Mercanti DJ, Reinheimer JA, Quiberoni Adel L. Review: efficiency of physical and chemical treatments on the inactivation of dairy bacteriophages. Front Microbiol. 2012a Jan;2:282. https://doi.org/10.3389/fmicb.2011.00282
- Guglielmotti DM, Patrignani F, Lanciotti R, Guerzoni ME, Reinheimer JA, Quiberoni A. High pressure homogenization versus heat treatment: effect on survival, growth, and metabolism of dairy Leuconostoc strains. J Food Prot. 2012b Sep;75(9):1634–1641. https://doi.org/10.4315/0362-028X.JFP-12-013
- Guo S, Wen Q, Zhao J, Sakandar HA, Yao J, Chen X. Whole genome sequence analysis of bacteriophage P1 that infects the Lactobacillus plantarum. Virus Genes. 2022 Dec;58(6):570–583. https://doi.org/10.1007/s11262-022-01929-1
- Han C, Yao Y, Lv S, Wu Y, Lu A, Yan C, Liu Y, Luo X, Ni X. Study on the components of isopropanol aqueous solution. Optik. 2017 Feb;155:164–189. https://doi.org/10.1016/j.ijleo.2017.10.164
- Hassaballah AH, Bhatt T, Nyitrai J, Dai N, Sassoubre L. Inactivation of E. coli, Enterococcus spp. somatic coliphage, and Cryptosporidium parvum in wastewater by peracetic acid (PAA), sodium hypochlorite, and combined PAA-ultraviolet disinfection. Environ Sci Water Res Technol. 2020;1(6):197–209. https://doi.org/10.1039/c9ew00837c
- Hayes S, Murphy J, Mahony J, Lugli GA, Ventura M, Noben JP, Franz CM, Neve H, Nauta A, Van Sinderen D. Biocidal inactivation of Lactococcus lactis bacteriophages: Efficacy and targets of commonly used sanitizers. Front Microbiol. 2017 Feb;8:107. https://doi.org/10.3389/fmicb.2017.00107
- Hernando-Pérez M, Cartagena-Rivera AX, Lošdorfer Božič A, Carrillo PJ, San Martín C, Mateu MG, Raman A, Podgornik R, de Pablo PJ. Quantitative nanoscale electrostatics of viruses. Nanoscale. 2015 Nov;7(41): 17289–17298. https://doi.org/10.1039/c5nr04274g
- Horn H, Niemeyer B. Corrosion inhibition of peracetic acid-based disinfectants. Chem Eng Technol. 2022; 45(1):129–134. https://doi.org/10.1002/ceat.202100144
- Kalua CM, Boss PK. Sample preparation optimization in wine and grapes. Dilution and sample/headspace volume equilibrium theory for headspace solid-phase microextraction. J Chromatogr A. 2008 May;1192(1):25–35. https://doi.org/10.1016/j.chroma.2008.03.053
- Kim EJ, Lee YD, Kim KY, Park JH. A Synergy effect of trisodium phosphate and ethanol on inactivation of murine norovirus 1 on lettuce and bell pepper. J Microbiol Biotechnol. 2015 Dec;25(12): 2106–2109. https://doi.org/10.4014/jmb.1503.03032
- Kim HW, Lee NY, Park SM, Rhee MS. A fast and effective alternative to a high-ethanol disinfectant: low concentrations of fermented ethanol, caprylic acid, and citric acid synergistically eradicate biofilm-embedded methicillin-resistant Staphylococcus aureus. Int J Hyg Environ Health. 2020 Aug;229:113586. https://doi.org/10.1016/j.ijheh.2020.113586
- Mahony J, van Sinderen D. Novel strategies to prevent or exploit phages in fermentations, insights from phage-host interactions. Curr Opin Biotechnol. 2015 Apr;32:8–13. https://doi.org/10.1016/j.copbio.2014.09.006
- Maillard JY, Hann AC, Baubet V, Perrin R. Efficacy and mechanisms of action of sodium hypochlorite on Pseudomonas aeruginosa PAO1 phage F116. J Appl Microbiol. 1998 Dec;85(6):925–932. https://doi.org/10.1111/j.1365-2672.1998.tb05255.x
- Maillard JY. Bacterial target sites for biocide action. J Appl Microbiol. 2002;92(Suppl):16S–27S. https://doi.org/10.1046/j.1365-2672.92.5s1.3.x
- Mayer BK, Yang Y, Gerrity DW, Abbaszadegan M. The impact of capsid proteins on virus removal and inactivation during water treatment processes. Microbiol Insights. 2015 Nov;8(Suppl 2):15–28. https://doi.org/10.4137/MBI.S31441
- Mercanti DJ, Guglielmotti DM, Patrignani F, Reinheimer JA, Quiberoni A. Resistance of two temperate Lactobacillus paracasei bacteriophages to high pressure homogenization, thermal treatments and chemical biocides of industrial application. Food Microbiol. 2012 Feb;29(1):99–104. https://doi.org/10.1016/j.fm.2011.09.003
- Mirmohammadi R, Zamindar N, Razavi SH, Mirmohammadi M, Paidari S. Investigation of the possibility of fermentation of red grape juice and rice flour by Lactobacillus plantarum and Lactobacillus casei. Food Sci Nutr. 2021 Aug;9(10):5370–5378. https://doi.org/10.1002/fsn3.2461
- Murphy J, Mahony J, Bonestroo M, Nauta A, van Sinderen D. Impact of thermal and biocidal treatments on lactococcal 936-type phages. Int Dairy J. 2014 Jan;34(1):56–61. https://doi.org/10.1016/j.idairyj.2013.06.011
- Osinnikova DN, Moroshkina EB, Mokronosova ES. Effect of sodium hypochlorite on nucleic acids of different primary and secondary structures. J Phys Conf Ser. 2019 Nov;1400(3):033001. https://doi.org/10.1088/1742-6596/1400/3/033001
- Połaska M, Sokołowska B. Bacteriophages – a new hope or a huge problem in the food industry. AIMS Microbiol. 2019 Oct;5(4):324–346. https://doi.org/10.3934/microbiol.2019.4.324
- Pujato SA, Guglielmotti DM, Ackermann HW, Patrignani F, Lanciotti R, Reinheimer JA, Quiberoni A. Leuconostoc bacteriophages from blue cheese manufacture: long-term survival, resistance to thermal treatments, high pressure homogenization and chemical biocides of industrial application. Int J Food Microbiol. 2014 May;177:81–88. https://doi.org/10.1016/j.ijfoodmicro.2014.02.012
- Pujato SA, Quiberoni A, Mercanti DJ. Bacteriophages on dairy foods. J Appl Microbiol. 2019 Jan;126(1):14–30. https://doi.org/10.1111/jam.14062
- Quiberoni A, Guglielmotti DM, Reinheimer JA. Inactivation of Lactobacillus delbrueckii bacteriophages by heat and biocides. Int J Food Microbiol. 2003 Jul;84(1):51–62. https://doi.org/10.1016/s0168-1605(02)00394-x
- Sato J, Miki M, Kubota H, Hitomi J, Tokuda H, Todaka-Takai R, Katayama K. Effects of disinfectants against norovirus virus-like particles predict norovirus inactivation. Microbiol Immunol. 2016 Sep;60(9):609–616. https://doi.org/10.1111/1348-0421.12435
- Sauerbrei A. Bactericidal and virucidal activity of ethanol and povidone-iodine. Microbiologyopen. 2020 Sep;9(9):e1097. https://doi.org/10.1002/mbo3.1097
- Scheffler S, Trautmann S, Smith M, Kalus U, von Versen R, Pauli G, Pruss A. No influence of collagenous proteins of Achilles tendon, skin and cartilage on the virus-inactivating efficacy of peracetic acid-ethanol. Biologicals. 2007 Oct;35(4):355–359. https://doi.org/10.1016/j.biologicals.2007.03.004
- Schmitz BW, Wang H, Schwab K, Jacangelo J. Selected mechanistic aspects of viral inactivation by peracetic acid. Environ Sci Technol. 2021 Dec;55(23):16120–16129. https://doi.org/10.1021/acs.est.1c04302
- Seddik HA, Bendali F, Gancel F, Fliss I, Spano G, Drider D. Lactobacillus plantarum and its probiotic and food potentialities. Probiotics Antimicrob Proteins. 2017 Jun;9(2):111–122. https://doi.org/10.1007/s12602-017-9264-z
- Setlow B, Loshon CA, Genest PC, Cowan AE, Setlow C, Setlow P. Mechanisms of killing spores of Bacillus subtilis by acid, alkali and ethanol. J Appl Microbiol. 2002;92(2):362–375. https://doi.org/10.1046/j.1365-2672.2002.01540.x
- Suárez VB, Reinheimer JA. Effectiveness of thermal treatments and biocides in the inactivation of Argentinian Lactococcus lactis phages. J Food Prot. 2002 Nov;65(11):1756–1759. https://doi.org/10.4315/0362-028x-65.11.1756
- Torii S, Corre MH, Miura F, Itamochi M, Haga K, Katayama K, Katayama H, Kohn T. Genotype-dependent kinetics of enterovirus inactivation by free chlorine and ultraviolet (UV) irradiation. Water Res. 2022 Jul;220:118712. https://doi.org/10.1016/j.watres.2022.118712
- Wang W, Ma H, Yu H, Qin G, Tan Z, Wang Y, Pang H. Screening of Lactobacillus plantarum subsp. plantarum with potential probiotic activities for inhibiting ETEC K88 in weaned piglets. Molecules. 2020 Sep 29;25(19):4481. https://doi.org/10.3390/molecules25194481
- Wutzler P, Sauerbrei A. Virucidal efficacy of a combination of 0.2% peracetic acid and 80% (v/v) ethanol (PAA-ethanol) as a potential hand disinfectant. J Hosp Infect. 2000 Dec;46(4):304–308. https://doi.org/10.1053/jhin.2000.0850
- Ye Y, Chang PH, Hartert J, Wigginton KR. Reactivity of enveloped virus genome, proteins, and lipids with free chlorine and UV254. Environ Sci Technol. 2018 Jul;52(14):7698–7708. https://doi.org/10.1021/acs.est.8b00824
- Yeap JW, Kaur S, Lou F, DiCaprio E, Morgan M, Linton R, Li J. Inactivation kinetics and mechanism of a human norovirus surrogate on stainless steel coupons via chlorine dioxide Gas. Appl Environ Microbiol. 2015 Oct;82(1):116–123. https://doi.org/10.1128/AEM.02489-15
- Zhang Z, Jiang B, Liao X, Yi J, Hu X, Zhang Y. Inactivation of Bacillus subtilis spores by combining high-pressure thermal sterilization and ethanol. Int J Food Microbiol. 2012 Nov;160(2):99–104. https://doi.org/10.1016/j.ijfoodmicro.2012.10.009
- Zhu H, Guo S, Zhao J, Arbab Sakandar H, Lv R, Wen Q, Chen X. Whole genome sequence analysis of Lactiplantibacillus plantarum bacteriophage P2. Pol J Microbiol. 2022 Sep;71(3):421–428. https://doi.org/10.33073/pjm-2022-037
- Zhu Q, Kim SJ, Choi SK, Kim JS, Lee SI, Ryu HD. Characteristics of biological treatment of isopropyl alcohol wastewater. Environ Eng Sci. 2019;36(9):1019–1026. https://doi.org/10.1089/ees.2018.0389
- Zonta W, Mauroy A, Farnir F, Thiry E. Comparative virucidal efficacy of seven disinfectants against murine norovirus and feline calicivirus, surrogates of human norovirus. Food Environ Virol. 2016 Mar;8(1):1–12. https://doi.org/10.1007/s12560-015-9216-2