Have a personal or library account? Click to login
Impact of Primary and Secondary Bile Acids on Clostridioides difficile Infection Cover

Impact of Primary and Secondary Bile Acids on Clostridioides difficile Infection

Open Access
|Mar 2022

References

  1. Abt MC, McKenney PT, Pamer EG. Clostridium difficile colitis: pathogenesis and host defence. Nat Rev Microbiol. 2016 Oct; 14(10): 609–620. <a href="https://doi.org/10.1038/nrmicro.2016.108" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/nrmicro.2016.108</a>
  2. Allegretti JR, Kearney S, Li N, Bogart E, Bullock K, Gerber GK, Bry L, Clish CB, Alm E, Korzenik JR. Recurrent Clostridium difficile infection associates with distinct bile acid and microbiome profiles. Aliment Pharmacol Ther. 2016 Jun;43(11):1142–1153. <a href="https://doi.org/10.1111/apt.13616" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/apt.13616</a>
  3. Babaknejad N, Nayeri H, Hemmati R, Bahrami S, Esmaillzadeh A. An overview of FGF19 and FGF21: the therapeutic role in the treatment of the metabolic disorders and obesity FGF19. Horm Metab Res. 2018 Jun;50(6):441–452. <a href="https://doi.org/10.1055/a-0623-2909" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1055/a-0623-2909</a>
  4. Bidault-Jourdainne V, Merlen G, Glénisson M, Doignon I, Garcin I, Péan N, Boisgard R, Ursic-Bedoya J, Serino M, Ullmer C, et al. TGR5 controls bile acid composition and gallbladder function to protect the liver from bile acid overload. JHEP Reports. 2021 Nov; 3(2):100214. <a href="https://doi.org/10.1016/j.jhepr.2020.100214" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhepr.2020.100214</a>
  5. Britton RA, Young VB. Role of the intestinal microbiota in resistance to colonization by Clostridium difficile. Gastroenterology. 2014 May; 146(6):1547–1553. <a href="https://doi.org/10.1053/j.gastro.2014.01.059" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1053/j.gastro.2014.01.059</a>
  6. Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, No D, Liu H, Kinnebrew M, Viale A, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 2015 Jan;517:205–208. <a href="https://doi.org/10.1038/nature13828" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/nature13828</a>
  7. Cabrera D, Arab JP, Arrese M. UDCA, NorUDCA, and TUDCA in liver diseases: a review of their mechanisms of action and clinical applications. In: Fiorucci S, Distrutti E, editors. Bile acids and their receptors. Handbook of experimental pharmacology. Cham (Switzerland): Springer; 2019(256). p. 237–264. <a href="https://doi.org/10.1007/164_2019_241" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/164_2019_241</a>
  8. Chiang JYL, Ferrell JM. Bile acids as metabolic regulators and nutrient sensors. Annu Rev Nutr. 2019 Aug;39:175–200. <a href="https://doi.org/10.1146/annurev-nutr-082018-124344" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1146/annurev-nutr-082018-124344</a>
  9. Czepiel J, Dróżdż M, Pituch H, Kuijper EJ, Perucki W, Mielimonka A, Goldman S, Wultańska D, Garlicki A, Biesiada G. Clostridium difficile infection: review. Eur J Clin Microbiol Infect Dis. 2019 Jul;38(7):1211–1221. <a href="https://doi.org/10.1007/s10096-019-03539-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10096-019-03539-6</a>
  10. Dawson PA, Karpen SJ. Intestinal transport and metabolism of bile acids. J Lipid Res. 2015 Jun;56(6):1085–1099. <a href="https://doi.org/10.1194/jlr.R054114" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1194/jlr.R054114</a>
  11. Di Gregorio MC, Cautela J, Galantini L. Physiology and physical chemistry of bile acids. Int J Mol Sci. 2021 Feb;22(4):1780. <a href="https://doi.org/10.3390/ijms22041780" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms22041780</a>
  12. Duboc H, Taché Y, Hofmann AF. The bile acid TGR5 membrane receptor: from basic research to clinical application. Dig Liver Dis. 2014 Apr;46(4):302–312. <a href="https://doi.org/10.1016/j.dld.2013.10.021" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.dld.2013.10.021</a>
  13. Ferrebee CB, Dawson PA. Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids. Acta Pharm Sin B. 2015 Mar;5(2):129–134. <a href="https://doi.org/10.1016/j.apsb.2015.01.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.apsb.2015.01.001</a>
  14. Fiorucci S, Di Giorgio C, Distrutti E. Obeticholic acid: an update of its pharmacological activities in liver disorders. In: Fiorucci S, Distrutti E, editors. Bile acids and their receptors. Handbook of experimental pharmacology. Cham (Switzerland): Springer; 2019 (256). p. 283–295. <a href="https://doi.org/10.1007/164_2019_227" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/164_2019_227</a>
  15. Fiorucci S, Distrutti E. The pharmacology of bile acids and their receptors. In: Fiorucci S, Distrutti E, editors. Bile acids and their receptors. Handbook of experimental pharmacology. Cham (Switzerland): Springer; 2019(256). p. 3–18. <a href="https://doi.org/10.1007/164_2019_238" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/164_2019_238</a>
  16. Floreani A. Experimental pharmacological agents for the treatment of primary biliary cholangitis. J Exp Pharmacol. 2020 Dec;12: 643–652. <a href="https://doi.org/10.2147/JEP.S267375" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2147/JEP.S267375</a>
  17. Foley MH, O’Flaherty S, Barrangou R, Theriot CM. Bile salt hydrolases: gatekeepers of bile acid metabolism and host-microbiome crosstalk in the gastrointestinal tract. PLoS Pathog. 2019 Mar;15(3):e1007581. <a href="https://doi.org/10.1371/journal.ppat.1007581" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.ppat.1007581</a>
  18. Gonzalez FJ, Jiang C, Bisson WH, Patterson AD. Inhibition of farnesoid X receptor signaling shows beneficial effects in human obesity. J Hepatol. 2015 Jun;62(6):1234–1236. <a href="https://doi.org/10.1016/j.jhep.2015.02.043" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhep.2015.02.043</a>
  19. Guh AY, Mu Y, Winston LG, Johnston H, Olson D, Farley MM, Wilson LE, Holzbauer SM, Phipps EC, Dumyati GK, et al. Trends in U.S. Burden of Clostridioides difficile infection and outcomes. N Eng J Med. 2020 Apr;382(14):1320–1330. <a href="https://doi.org/10.1056/NEJMoa1910215" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1056/NEJMoa1910215</a>
  20. Hashimoto S, Igimi H, Uchida K, Satoh T, Benno Y, Takeuchi N. Effects of β-lactam antibiotics on intestinal microflora and bile acid metabolism in rats. Lipids. 1996 Jun;31(6):601–609. <a href="https://doi.org/10.1007/BF02523830" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/BF02523830</a>
  21. Jose S, Mukherjee A, Horrigan O, Setchell KDR, Zhang W, Moreno-Fernandez ME, Andersen H, Sharma D, Haslam DB, Divanovic S, et al. Obeticholic acid ameliorates severity of Clostri dioides difficile infection in high fat diet-induced obese mice. Mucosal Immunol. 2021 Mar;14(2):500–510. <a href="https://doi.org/10.1038/s41385-020-00338-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41385-020-00338-7</a>
  22. Kang JD, Myers CJ, Harris SC, Kakiyama G, Lee IK, Yun BS, Matsuzaki K, Furukawa M, Min HK, Bajaj JS, et al. Bile acid 7α-dehydroxylating gut gacteria secrete antibiotics that inhibit Clostridium difficile : role of secondary bile acids. Cell Chem Biol. 2019 Jan; 26(1):27–34.e4. <a href="https://doi.org/10.1016/j.chembiol.2018.10.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.chembiol.2018.10.003</a>
  23. Keith JW, Dong Q, Sorbara MT, Becattini S, Sia JK, Gjonbalaj M, Seok R, Leiner IM, Littmann ER, Pamer EG. Impact of antibiotic-resistant bacteria on immune activation and Clostridioides difficile infection in the mouse intestine. Infect Immun. 2020;88(4):e00362-19. <a href="https://doi.org/10.1128/IAI.00362-19" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/IAI.00362-19</a>
  24. Kim DJ, Yoon S, Ji SC, Yang J, Kim YK, Lee S, Yu KS, Jang IJ, Chung JY, Cho JY. Ursodeoxycholic acid improves liver function via phenylalanine/tyrosine pathway and microbiome remodelling in patients with liver dysfunction. Sci Rep. 2018 Aug;8(1):11874. <a href="https://doi.org/10.1038/s41598-018-30349-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41598-018-30349-1</a>
  25. Liu J, Lu H, Lu YF, Lei X, Cui JY, Ellis E, Strom SC, Klaassen CD. Potency of individual bile acids to regulate bile acid synthesis and transport genes in primary human hepatocyte cultures. Toxicol Sci. 2014 Oct;141(2):538–546. <a href="https://doi.org/10.1093/toxsci/kfu151" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/toxsci/kfu151</a>
  26. Mahida YR. New concepts in C. difficile management. Br Med Bull. 2019 Sep;131(1):109–118. <a href="https://doi.org/10.1093/bmb/ldz029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/bmb/ldz029</a>
  27. Marin JJG, Macias RIR, Briz O, Banales JM, Monte MJ. Bile acids in physiology, pathology and pharmacology. Curr Drug Metab. 2015; 17(1):4–29. <a href="https://doi.org/10.2174/1389200216666151103115454" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2174/1389200216666151103115454</a>
  28. Matsubara T, Li F, Gonzalez FJ. FXR signaling in the enterohepatic system. Mol Cell Endocrinol. 2013 Apr;368(1–2):17–29. <a href="https://doi.org/10.1016/j.mce.2012.05.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.mce.2012.05.004</a>
  29. McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, Dubberke ER, Garey KW, Gould CV, Kelly C, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018 Mar;66(7):e1–e48. <a href="https://doi.org/10.1093/cid/cix1085" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/cid/cix1085</a>
  30. Mohandas S, Vairappan B. Role of pregnane X-receptor in regulating bacterial translocation in chronic liver diseases. World J Hepatol. 2017 Nov;9(32):1210–1226. <a href="https://doi.org/10.4254/wjh.v9.i32.1210" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4254/wjh.v9.i32.1210</a>
  31. Mulki R, Baumann AJ, Alnabelsi T, Sandhu N, Alhamshari Y, Wheeler DS, Perloff S, Katz PO. Body mass index greater than 35 is associated with severe Clostridium difficile infection. Aliment Pharmacol Ther. 2017 Jan;45(1):75–81. <a href="https://doi.org/10.1111/apt.13832" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/apt.13832</a>
  32. Mullish BH, Allegretti JR. The contribution of bile acid metabolism to the pathogenesis of Clostridioides difficile infection. Therap Adv Gastroenterol. 2021 May;14:17562848211017724. <a href="https://doi.org/10.1177/17562848211017725" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1177/17562848211017725</a>
  33. Napolitano LM, Edmiston CE. Clostridium difficile disease: diagnosis, pathogenesis, and treatment update. Surgery. 2017 Aug; 162(2): 325–348. <a href="https://doi.org/10.1016/j.surg.2017.01.018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.surg.2017.01.018</a>
  34. Novotny K, Hapshy V, Nguyen H, Parmar M. Obeticholic Acid. [Internet]. Treasure Island (USA): StatPearls Publishing; 2021 [cited 2021 Oct 11]. Available from https://www.ncbi.nlm.nih.gov/books/NBK567735/
  35. Palmieri LJ, Rainteau D, Sokol H, Beaugerie L, Dior M, Coffin B, Humbert L, Eguether T, Bado A, Hoys S, et al. Inhibitory effect of ursodeoxycholic acid on Clostridium difficile germination is insufficient to prevent colitis: a study in hamsters and humans. Front Microbiol. 2018 Nov;9:2849. <a href="https://doi.org/10.3389/fmicb.2018.02849" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fmicb.2018.02849</a>
  36. Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006 Feb;47(2):241–259. <a href="https://doi.org/10.1194/jlr.R500013-JLR200" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1194/jlr.R500013-JLR200</a>
  37. Seekatz AM, Theriot CM, Rao K, Chang YM, Freeman AE, Kao JY, Young VB. Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection. Anaerobe. 2018 Feb; 53:64–73. <a href="https://doi.org/10.1016/j.anaerobe.2018.04.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.anaerobe.2018.04.001</a>
  38. Sehgal K, and Khanna S. Gut microbiome and Clostridioides difficile infection: a closer look at the microscopic interface. Therap Adv Gastroenterol. 2021 Feb;14:1–9. <a href="https://doi.org/10.1177/1756284821994736" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1177/1756284821994736</a>
  39. Sodum N, Kumar G, Bojja SL, Kumar N, Rao CM. Epigenetics in NAFLD/NASH: Targets and therapy. Pharmacol Res. 2021 May; 167:105484. <a href="https://doi.org/10.1016/j.phrs.2021.105484" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.phrs.2021.105484</a>
  40. Studer N, Desharnais L, Beutler M, Brugiroux S, Terrazos MA, Menin L, Schürch CM, McCoy KD, Kuehne SA, Minton NP, et al. Functional intestinal bile acid 7α-dehydroxylation by Clostridium scindens associated with protection from Clostridium difficile infection in a gnotobiotic mouse model. Front Cell Infect Microbiol. 2016 Dec;6:191. <a href="https://doi.org/10.3389/fcimb.2016.00191" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fcimb.2016.00191</a>
  41. Thanissery R, Winston JA, Theriot CM. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids. Anaerobe. 2017 Jun;45:86–100. <a href="https://doi.org/10.1016/j.anaerobe.2017.03.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.anaerobe.2017.03.004</a>
  42. Theriot CM, Bowman AA, Young VB. Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine. MSphere. 2016 Jan;1(1):e00045-15. <a href="https://doi.org/10.1128/msphere.00045-15" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/msphere.00045-15</a>
  43. Theriot CM, Koenigsknecht MJ, Carlson PE, Hatton GE, Nelson AM, Li B, Huffnagle GB, Li JZ, Young VB. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun. 2014 Jan;5:3114. <a href="https://doi.org/10.1038/ncomms4114" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/ncomms4114</a>
  44. Theriot CM, Koumpouras C, Carlson PE, Bergin II, Aronoff DM, Young VB. Cefoperazone-treated mice as an experimental platform to assess differential virulence of Clostridium difficile strains. Gut Microbes. 2011 Nov–Dec;2(6):326–234. <a href="https://doi.org/10.4161/GMIC.19142" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4161/GMIC.19142</a>
  45. Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal absorption of bile acids in health and disease. Compr Physiol. 2019 Dec;10(1):21–56. <a href="https://doi.org/10.1002/cphy.c190007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/cphy.c190007</a>
  46. Webb BJ, Brunner A, Lewis J, Ford CD, Lopansri BK. Repurposing an old drug for a new epidemic: ursodeoxycholic acid to prevent recurrent Clostridioides difficile infection. Clin Infect Dis. 2019 Jan;68(3):498–500. <a href="https://doi.org/10.1093/cid/ciy568" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/cid/ciy568</a>
  47. Wei M, Huang F, Zhao L, Zhang Y, Yang W, Wang S, Li M, Han X, Ge K, Qu C, et al. A dysregulated bile acid-gut microbiota axis contributes to obesity susceptibility. EBioMedicine. 2020 May; 55: 102766. <a href="https://doi.org/10.1016/j.ebiom.2020.102766" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ebiom.2020.102766</a>
  48. Weingarden AR, Chen C, Zhang N, Graiziger CT, Dosa PI, Steer CJ, Shaughnessy MK, Johnson JR, Sadowsky MJ, Khoruts A. Ursodeoxycholic acid inhibits Clostridium difficile spore germination and vegetative growth, and prevents the recurrence of ileal pouchitis associated with the infection. J Clin Gastroenterol. 2016a Sep;50(8):624–630. <a href="https://doi.org/10.1097/MCG.0000000000000427" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1097/MCG.0000000000000427</a>
  49. Weingarden AR, Dosa PI, DeWinter E, Steer CJ, Shaughnessy MK, Johnson JR, Khoruts A, Sadowsky MJ. Changes in colonic bile acid composition following fecal microbiota transplantation are sufficient to control Clostridium difficile germination and growth. PLoS One. 2016b Jan;11(1):e0147210. <a href="https://doi.org/10.1371/journal.pone.0147210" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.pone.0147210</a>
  50. Wells JE, Hylemon PB. Identification and characterization of a bile acid 7α-dehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7α-dehydroxylating strain isolated from human feces. Appl Environ Microbiol. 2000 Mar;66(3):1107–1113. <a href="https://doi.org/10.1128/AEM.66.3.1107-1113.2000" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/AEM.66.3.1107-1113.2000</a>
  51. Winston JA, Rivera AJ, Cai J, Thanissery R, Montgomery SA, Patterson AD, Theriot CM. Ursodeoxycholic acid (UDCA) mitigates the host inflammatory response during Clostridioides difficile infection by altering gut bile acids. Infect Immun. 2020 May; 88(6): e00045-20. <a href="https://doi.org/10.1128/IAI.00045-20" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/IAI.00045-20</a>
  52. Winston JA, Theriot CM. Diversification of host bile acids by members of the gut microbiota. Gut Microbes. 2020 Oct;11(2):158–171. <a href="https://doi.org/10.1080/19490976.2019.1674124" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/19490976.2019.1674124</a>
  53. Winston JA, Theriot CM. Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract. Anaerobe. 2016 Oct;41:44–50. <a href="https://doi.org/10.1016/j.anaerobe.2016.05.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.anaerobe.2016.05.003</a>
  54. Xie C, Huang W, Young RL, Jones KL, Horowitz M, Rayner CK, Wu T. Role of bile acids in the regulation of food intake, and their dysregulation in metabolic disease. Nutrients. 2021 Mar;13(4):1104. <a href="https://doi.org/10.3390/nu13041104" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/nu13041104</a>
  55. Zhang Y, LaCerte C, Kansra S, Jackson JP, Brouwer KR, Edwards JE. Comparative potency of obeticholic acid and natural bile acids on FXR in hepatic and intestinal in vitro cell models. Pharmacol Res Perspect. 2017 Dec;5(6):e00368. <a href="https://doi.org/10.1002/prp2.368" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/prp2.368</a>
DOI: https://doi.org/10.33073/pjm-2022-007 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 11 - 18
Submitted on: Nov 10, 2021
Accepted on: Jan 31, 2022
Published on: Mar 14, 2022
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Agata Łukawska, Agata Mulak, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.