Have a personal or library account? Click to login
Should Bacteriophages Be Classified as Parasites or Predators? Cover

Should Bacteriophages Be Classified as Parasites or Predators?

Open Access
|Feb 2022

References

  1. Barrios ME, Blanco Fernández MD, Cammarata RV, Torres C, Power P, Mbayed VA. Diversity of beta-lactamase-encoding genes in wastewater: bacteriophages as reporters. Arch Virol. 2021 May; 166(5):1337–1344. https://doi.org/10.1007/s00705-021-05024-y
  2. Batinovic S, Wassef F, Knowler SA, Rice DTF, Stanton CR, Rose J, Tucci J, Nittami T, Vinh A, Drummond GR, et al. Bacterio phages in natural and artificial environments. Pathogens. 2019 Jul 12; 8(3):100. https://doi.org/10.3390/pathogens8030100
  3. Betts A, Gifford DR, MacLean RC, King KC. Parasite diversity drives rapid host dynamics and evolution of resistance in a bacteriaphage system. Evolution. 2016 May;70(5):969–978. https://doi.org/10.1111/evo.12909
  4. Bhargava K, Nath G, Bhargava A, Aseri GK, Jain N. Phage therapeutics: from promises to practices and prospectives. Appl Microbiol Biotechnol. 2021 Dec;105(24):9047–9067. https://doi.org/10.1007/s00253-021-11695-z
  5. Boyd CM, Angermeyer A, Hays SG, Barth ZK, Patel KM, Seed KD. Bacteriophage ICP1: A persistent predator of Vibrio cholerae. Annu Rev Virol. 2021 Sep 29;8(1):285–304. https://doi.org/10.1146/annurev-virology-091919-072020
  6. Boyd EF. Bacteriophage-encoded bacterial virulence factors and phage-pathogenicity island interactions. Adv Virus Res. 2012; 82:91–118. https://doi.org/10.1016/B978-0-12-394621-8.00014-5
  7. Casas V, Maloy S. Role of bacteriophage-encoded exotoxins in the evolution of bacterial pathogens. Future Microbiol. 2011 Dec;6(12): 1461–1473. https://doi.org/10.2217/fmb.11.124
  8. Correa AMS, Howard-Varona C, Coy SR, Buchan A, Sullivan MB, Weitz JS. Revisiting the rules of life for viruses of microorganisms. Nat Rev Microbiol. 2021 Aug;19(8):501–513. https://doi.org/10.1038/s41579-021-00530-x
  9. Dragoš A, Andersen AJC, Lozano-Andrade CN, Kempen PJ, Kovács ÁT, Strube ML. Phages carry interbacterial weapons encoded by biosynthetic gene clusters. Curr Biol. 2021 Aug 23;31(16):3479–3489.e5. https://doi.org/10.1016/j.cub.2021.05.046
  10. Drew GC, Stevens EJ, King KC. Microbial evolution and transitions along the parasite-mutualist continuum. Nat Rev Microbiol. 2021 Oct;19(10):623–638. https://doi.org/10.1038/s41579-021-00550-7
  11. Duan Y, Young R, Schnabl B. Bacteriophages and their potential for treatment of gastrointestinal diseases. Nat Rev Gastroenterol Hepatol. 2021 Nov 15. https://doi.org/10.1038/s41575-021-00536-z
  12. Fathima B, Archer AC. Bacteriophage therapy: recent developments and applications of a renaissant weapon. Res Microbiol. 2021 Sep–Oct;172(6):103863. https://doi.org/10.1016/j.resmic.2021.103863
  13. Górski A, Międzybrodzki R, Węgrzyn G, Jończyk-Matysiak E, Borysowski J, Weber-Dąbrowska B. Phage therapy: Current status and perspectives. Med Res Rev. 2020 Jan;40(1):459–463. https://doi.org/10.1002/med.21593
  14. Gorter FA, Hall AR, Buckling A, Scanlan PD. Parasite host range and the evolution of host resistance. J Evol Biol. 2015 May;28(5): 1119–1130. https://doi.org/10.1111/jeb.12639
  15. Grabowski Ł, Łepek K, Stasiłojć M, Kosznik-Kwaśnicka K, Zdrojewska K, Maciąg-Dorszyńska M, Węgrzyn G, Węgrzyn A. Bacteriophage-encoded enzymes destroying bacterial cell membranes and walls, and their potential use as antimicrobial agents. Microbiol Res. 2021 Jul;248:126746. https://doi.org/10.1016/j.micres.2021.126746
  16. Harada LK, Silva EC, Campos WF, Del Fiol FS, Vila M, Dąbrowska K, Krylov VN, Balcão VM. Biotechnological applications of bacteriophages: State of the art. Microbiol Res. 2018 Jul–Aug;212–213: 38–58. https://doi.org/10.1016/j.micres.2018.04.007
  17. Harper DR, Abedon ST, Burrowes BH, McConville ML. Bacteriophages. Biology, technology, therapy. Cham (Switzerland): Springer, Cham; 2021. https://doi.org/10.1007/978-3-319-41986-2
  18. Harrison E, Brockhurst MA. Ecological and evolutionary benefits of temperate phage: What does or doesn’t kill you makes you stronger. Bioessays. 2017 Dec;39(12):1700112. https://doi.org/10.1002/bies.201700112
  19. Hedrich R, Neher E. Venus flytrap: How an excitable, carnivorous plant works. Trends Plant Sci. 2018 Mar;23(3):220–234. https://doi.org/10.1016/j.tplants.2017.12.004
  20. Hsu CL, Duan Y, Fouts DE, Schnabl B. Intestinal virome and therapeutic potential of bacteriophages in liver disease. J Hepatol. 2021 Dec;75(6):1465–1475. https://doi.org/10.1016/j.jhep.2021.08.003
  21. Iszatt JJ, Larcombe AN, Chan HK, Stick SM, Garratt LW, Kicic A. Phage therapy for multi-drug resistant respiratory tract infections. Viruses. 2021 Sep 11;13(9):1809. https://doi.org/10.3390/v13091809
  22. Jaroszewicz W, Morcinek-Orłowska J, Pierzynowska K, Gaffke L, Węgrzyn G. Phage display and other peptide display technologies. FEMS Microbiol Rev. 2021 Oct 21:fuab052. https://doi.org/10.1093/femsre/fuab052
  23. Kortright KE, Chan BK, Koff JL, Turner PE. Phage therapy: A renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe. 2019 Feb 13;25(2):219–232. https://doi.org/10.1016/j.chom.2019.01.014
  24. Leung TLF, Poulin R. Parasitism, commensalism, and mutualism: Exploring the many shades of symbioses. Vie et Milieu – Life Environ. 2008;58(2):107–115.
  25. Li Y, Austin S. The P1 plasmid in action: time-lapse photomicroscopy reveals some unexpected aspects of plasmid partition. Plasmid. 2002 Nov;48(3):174–178. https://doi.org/10.1016/s0147-619x(02)00104-x
  26. Liu R, Li Z, Han G, Cun S, Yang M, Liu X. Bacteriophage ecology in biological wastewater treatment systems. Appl Microbiol Biotechnol. 2021 Jul;105(13):5299–5307. https://doi.org/10.1007/s00253-021-11414-8
  27. Łoś JM, Łoś M, Węgrzyn A, Węgrzyn G. Altruism of Shiga toxin-producing Escherichia coli: recent hypothesis versus experimental results. Front Cell Infect Microbiol. 2013 Jan 4;2:166. https://doi.org/10.3389/fcimb.2012.00166
  28. Łoś JM, Łoś M, Węgrzyn G. Bacteriophages carrying Shiga toxin genes: genomic variations, detection and potential treatment of pathogenic bacteria. Future Microbiol. 2011 Aug;6(8):909–924. https://doi.org/10.2217/fmb.11.70
  29. Łoś M, Czyz A, Sell E, Wegrzyn A, Neubauer P, Wegrzyn G. Bacteriophage contamination: is there a simple method to reduce its deleterious effects in laboratory cultures and biotechnological factories? J Appl Genet. 2004;45(1):111–120.
  30. Łoś M, Węgrzyn G. Pseudolysogeny. Adv Virus Res. 2012;82: 339–349. https://doi.org/10.1016/B978-0-12-394621-8.00019-4
  31. Lourenço M, Chaffringeon L, Lamy-Besnier Q, Pédron T, Campagne P, Eberl C, Bérard M, Stecher B, Debarbieux L, De Sordi L. The spatial heterogeneity of the gut limits predation and fosters coexistence of bacteria and bacteriophages. Cell Host Microbe. 2020 Sep 9;28(3):390–401.e5. https://doi.org/10.1016/j.chom.2020.06.002
  32. Mandyam KG, Jumpponen A. Mutualism-parasitism paradigm synthesized from results of root-endophyte models. Front Microbiol. 2015 Jan 12;5:776. https://doi.org/10.3389/fmicb.2014.00776
  33. Mgomi FC, Yuan L, Chen CW, Zhang YS, Yang ZQ. Bacteriophages: A weapon against mixed-species biofilms in the food processing environment. J Appl Microbiol. 2021 Dec 21;00:1–15. https://doi.org/10.1111/jam.15421
  34. Munson-McGee JH, Snyder JC, Young MJ. Archaeal viruses from high-temperature environments. Genes (Basel). 2018 Feb 27;9(3):128. https://doi.org/10.3390/genes9030128
  35. Naureen Z, Dautaj A, Anpilogov K, Camilleri G, Dhuli K, Tanzi B, Maltese PE, Cristofoli F, De Antoni L, Beccari T, et al. Bacteriophages presence in nature and their role in the natural selection of bacterial populations. Acta Biomed. 2020 Nov 9;91(13-S):e2020024. https://doi.org/10.23750/abm.v91i13-S.10819
  36. Noureen S, Noreen S, Ghumman SA, Batool F, Bukhari SNA. The genus Cuscuta (Convolvolaceae): An updated review on indigenous uses, phytochemistry, and pharmacology. Iran J Basic Med Sci. 2019 Nov;22(11):1225–1252. https://doi.org/10.22038/ijbms.2019.35296.8407
  37. Orzechowska B, Mohammed M. The war between bacteria and bacteriophages. In: Mishra M, editor. Growing and handling of bacterial cultures. London (UK): IntechOpen; 2019. https://doi.org/10.5772/intechopen.87247
  38. Paszkowski U. Mutualism and parasitism: the yin and yang of plant symbioses. Curr Opin Plant Biol. 2006 Aug;9(4):364–370. https://doi.org/10.1016/j.pbi.2006.05.008
  39. Pessione E. The Russian doll model: How bacteria shape successful and sustainable inter-kingdom relationships. Front Microbiol 2020 Oct 20;11:573759. https://doi.org/10.3389/fmicb.2020.573759
  40. Podlacha M, Grabowski Ł, Kosznik-Kawśnicka K, Zdrojewska K, Stasiłojć M, Węgrzyn G, Węgrzyn A. Interactions of bacteriophages with animal and human organisms-safety issues in the light of phage therapy. Int J Mol Sci. 2021 Aug 19;22(16):8937. https://doi.org/10.3390/ijms22168937
  41. Rybchin VN, Svarchevsky AN. The plasmid prophage N15: a linear DNA with covalently closed ends. Mol Microbiol. 1999 Sep;33(5): 895–903. https://doi.org/10.1046/j.1365-2958.1999.01533.x
  42. Salmond GP, Fineran PC. A century of the phage: past, present and future. Nat Rev Microbiol. 2015 Dec;13(12):777–786. https://doi.org/10.1038/nrmicro3564
  43. Srinivasiah S, Bhavsar J, Thapar K, Liles M, Schoenfeld T, Wommack KE. Phages across the biosphere: contrasts of viruses in soil and aquatic environments. Res Microbiol. 2008 Jun;159(5):349–357. https://doi.org/10.1016/j.resmic.2008.04.010
  44. Stevens A. Predation, herbivory, and parasitism [Internet]. Nature Education Knowledge. 2010;3(10):36 [cited 2021 Nov 10]. Available from https://www.nature.com/scitable/knowledge/library/predation-herbivory-and-parasitism-13261134/
  45. Tetz G, Tetz V. Bacteriophages as new human viral pathogens. Microorganisms. 2018 Jun 16;6(2):54. https://doi.org/10.3390/microorganisms6020054
  46. Tetz GV, Ruggles KV, Zhou H, Heguy A, Tsirigos A, Tetz V. Bacteriophages as potential new mammalian pathogens. Sci Rep. 2017 Aug 1;7(1):7043. https://doi.org/10.1038/s41598-017-07278-6
  47. Thingstad TF, Pree B, Giske J, Våge S. What difference does it make if viruses are strain-, rather than species-specific? Front Microbiol. 2015 Apr 20;6:320. https://doi.org/10.3389/fmicb.2015.00320
  48. Tian F, Li J, Nazir A, Tong Y. Bacteriophage – A promising alternative measure for bacterial biofilm control. Infect Drug Resist. 2021 Jan 20;14:205–217. https://doi.org/10.2147/IDR.S290093
  49. Topka-Bielecka G, Dydecka A, Necel A, Bloch S, Nejman-Faleńczyk B, Węgrzyn G, Węgrzyn A. Bacteriophage-derived depolymerases against bacterial biofilm. Antibiotics (Basel). 2021 Feb 10;10(2):175. https://doi.org/10.3390/antibiotics10020175
  50. Toyofuku M, Cárcamo-Oyarce G, Yamamoto T, Eisenstein F, Hsiao C-C, Kurosawa M, Gademann K, Pilhofer M, Nomura N, Eberl L. Prophage-triggered membrane vesicle formation through peptidoglycan damage in Bacillus subtilis. Nat Commun. 2017 Sep 7;8(1):481. https://doi.org/10.1038/s41467-017-00492-w
  51. Turnau K, Fiałkowska E, Ważny R, Rozpądek P, Tylko G, Bloch S, Nejman-Faleńczyk B, Grabski M, Węgrzyn A, Węgrzyn G. Extraordinary multi-organismal interactions involving bacteriophages, bacteria, fungi, and rotifers: Quadruple microbial trophic network in water droplets. Int J Mol Sci. 2021 Feb 22;22(4):2178. https://doi.org/10.3390/ijms22042178
  52. Turnbull L, Toyofuku M, Hynen AL, Kurosawa M, Pessi G, Petty NK, Osvath SR, Cárcamo-Oyarce G, Gloag ES, Shimoni R, et al. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat Commun. 2016 Apr 14;7: 11220. https://doi.org/10.1038/ncomms11220
  53. Wandro S, Oliver A, Gallagher T, Weihe C, England W, Martiny JBH, Whiteson K. Predictable molecular adaptation of coevolving Enterococcus faecium and lytic phage EfV12-phi1. Front Microbiol. 2019 Jan 31;9:3192. https://doi.org/10.3389/fmicb.2018.03192
  54. Zalewska-Piątek B, Piątek R. Bacteriophages as potential tools for use in antimicrobial therapy and vaccine development. Pharmaceuticals (Basel). 2021 Apr 5;14(4):331. https://doi.org/10.3390/ph14040331
  55. Zhang Y, Li CX, Zhang XZ. Bacteriophage-mediated modulation of microbiota for diseases treatment. Adv Drug Deliv Rev. 2021 Sep; 176:113856. https://doi.org/10.1016/j.addr.2021.113856
DOI: https://doi.org/10.33073/pjm-2022-005 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 3 - 9
Submitted on: Nov 28, 2021
|
Accepted on: Jan 8, 2022
|
Published on: Feb 23, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Grzegorz Węgrzyn, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.