References
- Barrios ME, Blanco Fernández MD, Cammarata RV, Torres C, Power P, Mbayed VA. Diversity of beta-lactamase-encoding genes in wastewater: bacteriophages as reporters. Arch Virol. 2021 May; 166(5):1337–1344.
https://doi.org/10.1007/s00705-021-05024-y - Batinovic S, Wassef F, Knowler SA, Rice DTF, Stanton CR, Rose J, Tucci J, Nittami T, Vinh A, Drummond GR, et al. Bacterio phages in natural and artificial environments. Pathogens. 2019 Jul 12; 8(3):100.
https://doi.org/10.3390/pathogens8030100 - Betts A, Gifford DR, MacLean RC, King KC. Parasite diversity drives rapid host dynamics and evolution of resistance in a bacteriaphage system. Evolution. 2016 May;70(5):969–978.
https://doi.org/10.1111/evo.12909 - Bhargava K, Nath G, Bhargava A, Aseri GK, Jain N. Phage therapeutics: from promises to practices and prospectives. Appl Microbiol Biotechnol. 2021 Dec;105(24):9047–9067.
https://doi.org/10.1007/s00253-021-11695-z - Boyd CM, Angermeyer A, Hays SG, Barth ZK, Patel KM, Seed KD. Bacteriophage ICP1: A persistent predator of Vibrio cholerae. Annu Rev Virol. 2021 Sep 29;8(1):285–304.
https://doi.org/10.1146/annurev-virology-091919-072020 - Boyd EF. Bacteriophage-encoded bacterial virulence factors and phage-pathogenicity island interactions. Adv Virus Res. 2012; 82:91–118.
https://doi.org/10.1016/B978-0-12-394621-8.00014-5 - Casas V, Maloy S. Role of bacteriophage-encoded exotoxins in the evolution of bacterial pathogens. Future Microbiol. 2011 Dec;6(12): 1461–1473.
https://doi.org/10.2217/fmb.11.124 - Correa AMS, Howard-Varona C, Coy SR, Buchan A, Sullivan MB, Weitz JS. Revisiting the rules of life for viruses of microorganisms. Nat Rev Microbiol. 2021 Aug;19(8):501–513.
https://doi.org/10.1038/s41579-021-00530-x - Dragoš A, Andersen AJC, Lozano-Andrade CN, Kempen PJ, Kovács ÁT, Strube ML. Phages carry interbacterial weapons encoded by biosynthetic gene clusters. Curr Biol. 2021 Aug 23;31(16):3479–3489.e5.
https://doi.org/10.1016/j.cub.2021.05.046 - Drew GC, Stevens EJ, King KC. Microbial evolution and transitions along the parasite-mutualist continuum. Nat Rev Microbiol. 2021 Oct;19(10):623–638.
https://doi.org/10.1038/s41579-021-00550-7 - Duan Y, Young R, Schnabl B. Bacteriophages and their potential for treatment of gastrointestinal diseases. Nat Rev Gastroenterol Hepatol. 2021 Nov 15.
https://doi.org/10.1038/s41575-021-00536-z - Fathima B, Archer AC. Bacteriophage therapy: recent developments and applications of a renaissant weapon. Res Microbiol. 2021 Sep–Oct;172(6):103863.
https://doi.org/10.1016/j.resmic.2021.103863 - Górski A, Międzybrodzki R, Węgrzyn G, Jończyk-Matysiak E, Borysowski J, Weber-Dąbrowska B. Phage therapy: Current status and perspectives. Med Res Rev. 2020 Jan;40(1):459–463.
https://doi.org/10.1002/med.21593 - Gorter FA, Hall AR, Buckling A, Scanlan PD. Parasite host range and the evolution of host resistance. J Evol Biol. 2015 May;28(5): 1119–1130.
https://doi.org/10.1111/jeb.12639 - Grabowski Ł, Łepek K, Stasiłojć M, Kosznik-Kwaśnicka K, Zdrojewska K, Maciąg-Dorszyńska M, Węgrzyn G, Węgrzyn A. Bacteriophage-encoded enzymes destroying bacterial cell membranes and walls, and their potential use as antimicrobial agents. Microbiol Res. 2021 Jul;248:126746.
https://doi.org/10.1016/j.micres.2021.126746 - Harada LK, Silva EC, Campos WF, Del Fiol FS, Vila M, Dąbrowska K, Krylov VN, Balcão VM. Biotechnological applications of bacteriophages: State of the art. Microbiol Res. 2018 Jul–Aug;212–213: 38–58.
https://doi.org/10.1016/j.micres.2018.04.007 - Harper DR, Abedon ST, Burrowes BH, McConville ML. Bacteriophages. Biology, technology, therapy. Cham (Switzerland): Springer, Cham; 2021.
https://doi.org/10.1007/978-3-319-41986-2 - Harrison E, Brockhurst MA. Ecological and evolutionary benefits of temperate phage: What does or doesn’t kill you makes you stronger. Bioessays. 2017 Dec;39(12):1700112.
https://doi.org/10.1002/bies.201700112 - Hedrich R, Neher E. Venus flytrap: How an excitable, carnivorous plant works. Trends Plant Sci. 2018 Mar;23(3):220–234.
https://doi.org/10.1016/j.tplants.2017.12.004 - Hsu CL, Duan Y, Fouts DE, Schnabl B. Intestinal virome and therapeutic potential of bacteriophages in liver disease. J Hepatol. 2021 Dec;75(6):1465–1475.
https://doi.org/10.1016/j.jhep.2021.08.003 - Iszatt JJ, Larcombe AN, Chan HK, Stick SM, Garratt LW, Kicic A. Phage therapy for multi-drug resistant respiratory tract infections. Viruses. 2021 Sep 11;13(9):1809.
https://doi.org/10.3390/v13091809 - Jaroszewicz W, Morcinek-Orłowska J, Pierzynowska K, Gaffke L, Węgrzyn G. Phage display and other peptide display technologies. FEMS Microbiol Rev. 2021 Oct 21:fuab052.
https://doi.org/10.1093/femsre/fuab052 - Kortright KE, Chan BK, Koff JL, Turner PE. Phage therapy: A renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe. 2019 Feb 13;25(2):219–232.
https://doi.org/10.1016/j.chom.2019.01.014 - Leung TLF, Poulin R. Parasitism, commensalism, and mutualism: Exploring the many shades of symbioses. Vie et Milieu – Life Environ. 2008;58(2):107–115.
- Li Y, Austin S. The P1 plasmid in action: time-lapse photomicroscopy reveals some unexpected aspects of plasmid partition. Plasmid. 2002 Nov;48(3):174–178.
https://doi.org/10.1016/s0147-619x(02)00104-x - Liu R, Li Z, Han G, Cun S, Yang M, Liu X. Bacteriophage ecology in biological wastewater treatment systems. Appl Microbiol Biotechnol. 2021 Jul;105(13):5299–5307.
https://doi.org/10.1007/s00253-021-11414-8 - Łoś JM, Łoś M, Węgrzyn A, Węgrzyn G. Altruism of Shiga toxin-producing Escherichia coli: recent hypothesis versus experimental results. Front Cell Infect Microbiol. 2013 Jan 4;2:166.
https://doi.org/10.3389/fcimb.2012.00166 - Łoś JM, Łoś M, Węgrzyn G. Bacteriophages carrying Shiga toxin genes: genomic variations, detection and potential treatment of pathogenic bacteria. Future Microbiol. 2011 Aug;6(8):909–924.
https://doi.org/10.2217/fmb.11.70 - Łoś M, Czyz A, Sell E, Wegrzyn A, Neubauer P, Wegrzyn G. Bacteriophage contamination: is there a simple method to reduce its deleterious effects in laboratory cultures and biotechnological factories? J Appl Genet. 2004;45(1):111–120.
- Łoś M, Węgrzyn G. Pseudolysogeny. Adv Virus Res. 2012;82: 339–349.
https://doi.org/10.1016/B978-0-12-394621-8.00019-4 - Lourenço M, Chaffringeon L, Lamy-Besnier Q, Pédron T, Campagne P, Eberl C, Bérard M, Stecher B, Debarbieux L, De Sordi L. The spatial heterogeneity of the gut limits predation and fosters coexistence of bacteria and bacteriophages. Cell Host Microbe. 2020 Sep 9;28(3):390–401.e5.
https://doi.org/10.1016/j.chom.2020.06.002 - Mandyam KG, Jumpponen A. Mutualism-parasitism paradigm synthesized from results of root-endophyte models. Front Microbiol. 2015 Jan 12;5:776.
https://doi.org/10.3389/fmicb.2014.00776 - Mgomi FC, Yuan L, Chen CW, Zhang YS, Yang ZQ. Bacteriophages: A weapon against mixed-species biofilms in the food processing environment. J Appl Microbiol. 2021 Dec 21;00:1–15.
https://doi.org/10.1111/jam.15421 - Munson-McGee JH, Snyder JC, Young MJ. Archaeal viruses from high-temperature environments. Genes (Basel). 2018 Feb 27;9(3):128.
https://doi.org/10.3390/genes9030128 - Naureen Z, Dautaj A, Anpilogov K, Camilleri G, Dhuli K, Tanzi B, Maltese PE, Cristofoli F, De Antoni L, Beccari T, et al. Bacteriophages presence in nature and their role in the natural selection of bacterial populations. Acta Biomed. 2020 Nov 9;91(13-S):e2020024.
https://doi.org/10.23750/abm.v91i13-S.10819 - Noureen S, Noreen S, Ghumman SA, Batool F, Bukhari SNA. The genus Cuscuta (Convolvolaceae): An updated review on indigenous uses, phytochemistry, and pharmacology. Iran J Basic Med Sci. 2019 Nov;22(11):1225–1252.
https://doi.org/10.22038/ijbms.2019.35296.8407 - Orzechowska B, Mohammed M. The war between bacteria and bacteriophages. In: Mishra M, editor. Growing and handling of bacterial cultures. London (UK): IntechOpen; 2019.
https://doi.org/10.5772/intechopen.87247 - Paszkowski U. Mutualism and parasitism: the yin and yang of plant symbioses. Curr Opin Plant Biol. 2006 Aug;9(4):364–370.
https://doi.org/10.1016/j.pbi.2006.05.008 - Pessione E. The Russian doll model: How bacteria shape successful and sustainable inter-kingdom relationships. Front Microbiol 2020 Oct 20;11:573759.
https://doi.org/10.3389/fmicb.2020.573759 - Podlacha M, Grabowski Ł, Kosznik-Kawśnicka K, Zdrojewska K, Stasiłojć M, Węgrzyn G, Węgrzyn A. Interactions of bacteriophages with animal and human organisms-safety issues in the light of phage therapy. Int J Mol Sci. 2021 Aug 19;22(16):8937.
https://doi.org/10.3390/ijms22168937 - Rybchin VN, Svarchevsky AN. The plasmid prophage N15: a linear DNA with covalently closed ends. Mol Microbiol. 1999 Sep;33(5): 895–903.
https://doi.org/10.1046/j.1365-2958.1999.01533.x - Salmond GP, Fineran PC. A century of the phage: past, present and future. Nat Rev Microbiol. 2015 Dec;13(12):777–786.
https://doi.org/10.1038/nrmicro3564 - Srinivasiah S, Bhavsar J, Thapar K, Liles M, Schoenfeld T, Wommack KE. Phages across the biosphere: contrasts of viruses in soil and aquatic environments. Res Microbiol. 2008 Jun;159(5):349–357.
https://doi.org/10.1016/j.resmic.2008.04.010 - Stevens A. Predation, herbivory, and parasitism [Internet]. Nature Education Knowledge. 2010;3(10):36 [cited 2021 Nov 10]. Available from
https://www.nature.com/scitable/knowledge/library/predation-herbivory-and-parasitism-13261134/ - Tetz G, Tetz V. Bacteriophages as new human viral pathogens. Microorganisms. 2018 Jun 16;6(2):54.
https://doi.org/10.3390/microorganisms6020054 - Tetz GV, Ruggles KV, Zhou H, Heguy A, Tsirigos A, Tetz V. Bacteriophages as potential new mammalian pathogens. Sci Rep. 2017 Aug 1;7(1):7043.
https://doi.org/10.1038/s41598-017-07278-6 - Thingstad TF, Pree B, Giske J, Våge S. What difference does it make if viruses are strain-, rather than species-specific? Front Microbiol. 2015 Apr 20;6:320.
https://doi.org/10.3389/fmicb.2015.00320 - Tian F, Li J, Nazir A, Tong Y. Bacteriophage – A promising alternative measure for bacterial biofilm control. Infect Drug Resist. 2021 Jan 20;14:205–217.
https://doi.org/10.2147/IDR.S290093 - Topka-Bielecka G, Dydecka A, Necel A, Bloch S, Nejman-Faleńczyk B, Węgrzyn G, Węgrzyn A. Bacteriophage-derived depolymerases against bacterial biofilm. Antibiotics (Basel). 2021 Feb 10;10(2):175.
https://doi.org/10.3390/antibiotics10020175 - Toyofuku M, Cárcamo-Oyarce G, Yamamoto T, Eisenstein F, Hsiao C-C, Kurosawa M, Gademann K, Pilhofer M, Nomura N, Eberl L. Prophage-triggered membrane vesicle formation through peptidoglycan damage in Bacillus subtilis. Nat Commun. 2017 Sep 7;8(1):481.
https://doi.org/10.1038/s41467-017-00492-w - Turnau K, Fiałkowska E, Ważny R, Rozpądek P, Tylko G, Bloch S, Nejman-Faleńczyk B, Grabski M, Węgrzyn A, Węgrzyn G. Extraordinary multi-organismal interactions involving bacteriophages, bacteria, fungi, and rotifers: Quadruple microbial trophic network in water droplets. Int J Mol Sci. 2021 Feb 22;22(4):2178.
https://doi.org/10.3390/ijms22042178 - Turnbull L, Toyofuku M, Hynen AL, Kurosawa M, Pessi G, Petty NK, Osvath SR, Cárcamo-Oyarce G, Gloag ES, Shimoni R, et al. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat Commun. 2016 Apr 14;7: 11220.
https://doi.org/10.1038/ncomms11220 - Wandro S, Oliver A, Gallagher T, Weihe C, England W, Martiny JBH, Whiteson K. Predictable molecular adaptation of coevolving Enterococcus faecium and lytic phage EfV12-phi1. Front Microbiol. 2019 Jan 31;9:3192.
https://doi.org/10.3389/fmicb.2018.03192 - Zalewska-Piątek B, Piątek R. Bacteriophages as potential tools for use in antimicrobial therapy and vaccine development. Pharmaceuticals (Basel). 2021 Apr 5;14(4):331.
https://doi.org/10.3390/ph14040331 - Zhang Y, Li CX, Zhang XZ. Bacteriophage-mediated modulation of microbiota for diseases treatment. Adv Drug Deliv Rev. 2021 Sep; 176:113856.
https://doi.org/10.1016/j.addr.2021.113856