Have a personal or library account? Click to login
Should Bacteriophages Be Classified as Parasites or Predators? Cover

Should Bacteriophages Be Classified as Parasites or Predators?

Open Access
|Feb 2022

References

  1. <bold>Barrios ME, Blanco Fernández MD, Cammarata RV, Torres C, Power P, Mbayed VA.</bold> Diversity of beta-lactamase-encoding genes in wastewater: bacteriophages as reporters. Arch Virol. 2021 May; 166(5):1337–1344. <a href="https://doi.org/10.1007/s00705-021-05024-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00705-021-05024-y</a>
  2. <bold>Batinovic S, Wassef F, Knowler SA, Rice DTF, Stanton CR, Rose J, Tucci J, Nittami T, Vinh A, Drummond GR, et al.</bold> Bacterio phages in natural and artificial environments. Pathogens. 2019 Jul 12; 8(3):100. <a href="https://doi.org/10.3390/pathogens8030100" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/pathogens8030100</a>
  3. <bold>Betts A, Gifford DR, MacLean RC, King KC.</bold> Parasite diversity drives rapid host dynamics and evolution of resistance in a bacteriaphage system. Evolution. 2016 May;70(5):969–978. <a href="https://doi.org/10.1111/evo.12909" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/evo.12909</a>
  4. <bold>Bhargava K, Nath G, Bhargava A, Aseri GK, Jain N.</bold> Phage therapeutics: from promises to practices and prospectives. Appl Microbiol Biotechnol. 2021 Dec;105(24):9047–9067. <a href="https://doi.org/10.1007/s00253-021-11695-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00253-021-11695-z</a>
  5. <bold>Boyd CM, Angermeyer A, Hays SG, Barth ZK, Patel KM, Seed KD.</bold> Bacteriophage ICP1: A persistent predator of <em>Vibrio cholerae</em>. Annu Rev Virol. 2021 Sep 29;8(1):285–304. <a href="https://doi.org/10.1146/annurev-virology-091919-072020" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1146/annurev-virology-091919-072020</a>
  6. <bold>Boyd EF.</bold> Bacteriophage-encoded bacterial virulence factors and phage-pathogenicity island interactions. Adv Virus Res. 2012; 82:91–118. <a href="https://doi.org/10.1016/B978-0-12-394621-8.00014-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-12-394621-8.00014-5</a>
  7. <bold>Casas V, Maloy S.</bold> Role of bacteriophage-encoded exotoxins in the evolution of bacterial pathogens. Future Microbiol. 2011 Dec;6(12): 1461–1473. <a href="https://doi.org/10.2217/fmb.11.124" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2217/fmb.11.124</a>
  8. <bold>Correa AMS, Howard-Varona C, Coy SR, Buchan A, Sullivan MB, Weitz JS.</bold> Revisiting the rules of life for viruses of microorganisms. Nat Rev Microbiol. 2021 Aug;19(8):501–513. <a href="https://doi.org/10.1038/s41579-021-00530-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41579-021-00530-x</a>
  9. <bold>Dragoš A, Andersen AJC, Lozano-Andrade CN, Kempen PJ, Kovács ÁT, Strube ML.</bold> Phages carry interbacterial weapons encoded by biosynthetic gene clusters. Curr Biol. 2021 Aug 23;31(16):3479–3489.e5. <a href="https://doi.org/10.1016/j.cub.2021.05.046" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cub.2021.05.046</a>
  10. <bold>Drew GC, Stevens EJ, King KC.</bold> Microbial evolution and transitions along the parasite-mutualist continuum. Nat Rev Microbiol. 2021 Oct;19(10):623–638. <a href="https://doi.org/10.1038/s41579-021-00550-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41579-021-00550-7</a>
  11. <bold>Duan Y, Young R, Schnabl B.</bold> Bacteriophages and their potential for treatment of gastrointestinal diseases. Nat Rev Gastroenterol Hepatol. 2021 Nov 15. <a href="https://doi.org/10.1038/s41575-021-00536-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41575-021-00536-z</a>
  12. <bold>Fathima B, Archer AC.</bold> Bacteriophage therapy: recent developments and applications of a renaissant weapon. Res Microbiol. 2021 Sep–Oct;172(6):103863. <a href="https://doi.org/10.1016/j.resmic.2021.103863" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.resmic.2021.103863</a>
  13. <bold>Górski A, Międzybrodzki R, Węgrzyn G, Jończyk-Matysiak E, Borysowski J, Weber-Dąbrowska B.</bold> Phage therapy: Current status and perspectives. Med Res Rev. 2020 Jan;40(1):459–463. <a href="https://doi.org/10.1002/med.21593" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/med.21593</a>
  14. <bold>Gorter FA, Hall AR, Buckling A, Scanlan PD.</bold> Parasite host range and the evolution of host resistance. J Evol Biol. 2015 May;28(5): 1119–1130. <a href="https://doi.org/10.1111/jeb.12639" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/jeb.12639</a>
  15. <bold>Grabowski Ł, Łepek K, Stasiłojć M, Kosznik-Kwaśnicka K, Zdrojewska K, Maciąg-Dorszyńska M, Węgrzyn G, Węgrzyn A.</bold> Bacteriophage-encoded enzymes destroying bacterial cell membranes and walls, and their potential use as antimicrobial agents. Microbiol Res. 2021 Jul;248:126746. <a href="https://doi.org/10.1016/j.micres.2021.126746" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.micres.2021.126746</a>
  16. <bold>Harada LK, Silva EC, Campos WF, Del Fiol FS, Vila M, Dąbrowska K, Krylov VN, Balcão VM.</bold> Biotechnological applications of bacteriophages: State of the art. Microbiol Res. 2018 Jul–Aug;212–213: 38–58. <a href="https://doi.org/10.1016/j.micres.2018.04.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.micres.2018.04.007</a>
  17. <bold>Harper DR, Abedon ST, Burrowes BH, McConville ML.</bold> Bacteriophages. Biology, technology, therapy. Cham (Switzerland): Springer, Cham; 2021. <a href="https://doi.org/10.1007/978-3-319-41986-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-3-319-41986-2</a>
  18. <bold>Harrison E, Brockhurst MA.</bold> Ecological and evolutionary benefits of temperate phage: What does or doesn’t kill you makes you stronger. Bioessays. 2017 Dec;39(12):1700112. <a href="https://doi.org/10.1002/bies.201700112" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/bies.201700112</a>
  19. <bold>Hedrich R, Neher E.</bold> Venus flytrap: How an excitable, carnivorous plant works. Trends Plant Sci. 2018 Mar;23(3):220–234. <a href="https://doi.org/10.1016/j.tplants.2017.12.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.tplants.2017.12.004</a>
  20. <bold>Hsu CL, Duan Y, Fouts DE, Schnabl B.</bold> Intestinal virome and therapeutic potential of bacteriophages in liver disease. J Hepatol. 2021 Dec;75(6):1465–1475. <a href="https://doi.org/10.1016/j.jhep.2021.08.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhep.2021.08.003</a>
  21. <bold>Iszatt JJ, Larcombe AN, Chan HK, Stick SM, Garratt LW, Kicic A.</bold> Phage therapy for multi-drug resistant respiratory tract infections. Viruses. 2021 Sep 11;13(9):1809. <a href="https://doi.org/10.3390/v13091809" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/v13091809</a>
  22. <bold>Jaroszewicz W, Morcinek-Orłowska J, Pierzynowska K, Gaffke L, Węgrzyn G.</bold> Phage display and other peptide display technologies. FEMS Microbiol Rev. 2021 Oct 21:fuab052. <a href="https://doi.org/10.1093/femsre/fuab052" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/femsre/fuab052</a>
  23. <bold>Kortright KE, Chan BK, Koff JL, Turner PE.</bold> Phage therapy: A renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe. 2019 Feb 13;25(2):219–232. <a href="https://doi.org/10.1016/j.chom.2019.01.014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.chom.2019.01.014</a>
  24. <bold>Leung TLF, Poulin R.</bold> Parasitism, commensalism, and mutualism: Exploring the many shades of symbioses. Vie et Milieu – Life Environ. 2008;58(2):107–115.
  25. <bold>Li Y, Austin S.</bold> The P1 plasmid in action: time-lapse photomicroscopy reveals some unexpected aspects of plasmid partition. Plasmid. 2002 Nov;48(3):174–178. <a href="https://doi.org/10.1016/s0147-619x(02)00104-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/s0147-619x(02)00104-x</a>
  26. <bold>Liu R, Li Z, Han G, Cun S, Yang M, Liu X.</bold> Bacteriophage ecology in biological wastewater treatment systems. Appl Microbiol Biotechnol. 2021 Jul;105(13):5299–5307. <a href="https://doi.org/10.1007/s00253-021-11414-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00253-021-11414-8</a>
  27. <bold>Łoś JM, Łoś M, Węgrzyn A, Węgrzyn G.</bold> Altruism of Shiga toxin-producing <em>Escherichia coli</em>: recent hypothesis versus experimental results. Front Cell Infect Microbiol. 2013 Jan 4;2:166. <a href="https://doi.org/10.3389/fcimb.2012.00166" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fcimb.2012.00166</a>
  28. <bold>Łoś JM, Łoś M, Węgrzyn G.</bold> Bacteriophages carrying Shiga toxin genes: genomic variations, detection and potential treatment of pathogenic bacteria. Future Microbiol. 2011 Aug;6(8):909–924. <a href="https://doi.org/10.2217/fmb.11.70" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2217/fmb.11.70</a>
  29. <bold>Łoś M, Czyz A, Sell E, Wegrzyn A, Neubauer P, Wegrzyn G.</bold> Bacteriophage contamination: is there a simple method to reduce its deleterious effects in laboratory cultures and biotechnological factories? J Appl Genet. 2004;45(1):111–120.
  30. <bold>Łoś M, Węgrzyn G.</bold> Pseudolysogeny. Adv Virus Res. 2012;82: 339–349. <a href="https://doi.org/10.1016/B978-0-12-394621-8.00019-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-12-394621-8.00019-4</a>
  31. <bold>Lourenço M, Chaffringeon L, Lamy-Besnier Q, Pédron T, Campagne P, Eberl C, Bérard M, Stecher B, Debarbieux L, De Sordi L.</bold> The spatial heterogeneity of the gut limits predation and fosters coexistence of bacteria and bacteriophages. Cell Host Microbe. 2020 Sep 9;28(3):390–401.e5. <a href="https://doi.org/10.1016/j.chom.2020.06.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.chom.2020.06.002</a>
  32. <bold>Mandyam KG, Jumpponen A.</bold> Mutualism-parasitism paradigm synthesized from results of root-endophyte models. Front Microbiol. 2015 Jan 12;5:776. <a href="https://doi.org/10.3389/fmicb.2014.00776" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fmicb.2014.00776</a>
  33. <bold>Mgomi FC, Yuan L, Chen CW, Zhang YS, Yang ZQ.</bold> Bacteriophages: A weapon against mixed-species biofilms in the food processing environment. J Appl Microbiol. 2021 Dec 21;00:1–15. <a href="https://doi.org/10.1111/jam.15421" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/jam.15421</a>
  34. <bold>Munson-McGee JH, Snyder JC, Young MJ.</bold> Archaeal viruses from high-temperature environments. Genes (Basel). 2018 Feb 27;9(3):128. <a href="https://doi.org/10.3390/genes9030128" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/genes9030128</a>
  35. <bold>Naureen Z, Dautaj A, Anpilogov K, Camilleri G, Dhuli K, Tanzi B, Maltese PE, Cristofoli F, De Antoni L, Beccari T, et al.</bold> Bacteriophages presence in nature and their role in the natural selection of bacterial populations. Acta Biomed. 2020 Nov 9;91(13-S):e2020024. <a href="https://doi.org/10.23750/abm.v91i13-S.10819" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.23750/abm.v91i13-S.10819</a>
  36. <bold>Noureen S, Noreen S, Ghumman SA, Batool F, Bukhari SNA.</bold> The genus <em>Cuscuta</em> (Convolvolaceae): An updated review on indigenous uses, phytochemistry, and pharmacology. Iran J Basic Med Sci. 2019 Nov;22(11):1225–1252. <a href="https://doi.org/10.22038/ijbms.2019.35296.8407" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.22038/ijbms.2019.35296.8407</a>
  37. <bold>Orzechowska B, Mohammed M.</bold> The war between bacteria and bacteriophages. In: Mishra M, editor. Growing and handling of bacterial cultures. London (UK): IntechOpen; 2019. <a href="https://doi.org/10.5772/intechopen.87247" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5772/intechopen.87247</a>
  38. <bold>Paszkowski U.</bold> Mutualism and parasitism: the yin and yang of plant symbioses. Curr Opin Plant Biol. 2006 Aug;9(4):364–370. <a href="https://doi.org/10.1016/j.pbi.2006.05.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.pbi.2006.05.008</a>
  39. <bold>Pessione E.</bold> The Russian doll model: How bacteria shape successful and sustainable inter-kingdom relationships. Front Microbiol 2020 Oct 20;11:573759. <a href="https://doi.org/10.3389/fmicb.2020.573759" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fmicb.2020.573759</a>
  40. <bold>Podlacha M, Grabowski Ł, Kosznik-Kawśnicka K, Zdrojewska K, Stasiłojć M, Węgrzyn G, Węgrzyn A.</bold> Interactions of bacteriophages with animal and human organisms-safety issues in the light of phage therapy. Int J Mol Sci. 2021 Aug 19;22(16):8937. <a href="https://doi.org/10.3390/ijms22168937" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms22168937</a>
  41. <bold>Rybchin VN, Svarchevsky AN.</bold> The plasmid prophage N15: a linear DNA with covalently closed ends. Mol Microbiol. 1999 Sep;33(5): 895–903. <a href="https://doi.org/10.1046/j.1365-2958.1999.01533.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1046/j.1365-2958.1999.01533.x</a>
  42. <bold>Salmond GP, Fineran PC.</bold> A century of the phage: past, present and future. Nat Rev Microbiol. 2015 Dec;13(12):777–786. <a href="https://doi.org/10.1038/nrmicro3564" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/nrmicro3564</a>
  43. <bold>Srinivasiah S, Bhavsar J, Thapar K, Liles M, Schoenfeld T, Wommack KE.</bold> Phages across the biosphere: contrasts of viruses in soil and aquatic environments. Res Microbiol. 2008 Jun;159(5):349–357. <a href="https://doi.org/10.1016/j.resmic.2008.04.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.resmic.2008.04.010</a>
  44. <bold>Stevens A.</bold> Predation, herbivory, and parasitism [Internet]. Nature Education Knowledge. 2010;3(10):36 [cited 2021 Nov 10]. Available from <a href="https://www.nature.com/scitable/knowledge/library/predation-herbivory-and-parasitism-13261134/" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://www.nature.com/scitable/knowledge/library/predation-herbivory-and-parasitism-13261134/</a>
  45. <bold>Tetz G, Tetz V.</bold> Bacteriophages as new human viral pathogens. Microorganisms. 2018 Jun 16;6(2):54. <a href="https://doi.org/10.3390/microorganisms6020054" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/microorganisms6020054</a>
  46. <bold>Tetz GV, Ruggles KV, Zhou H, Heguy A, Tsirigos A, Tetz V.</bold> Bacteriophages as potential new mammalian pathogens. Sci Rep. 2017 Aug 1;7(1):7043. <a href="https://doi.org/10.1038/s41598-017-07278-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41598-017-07278-6</a>
  47. <bold>Thingstad TF, Pree B, Giske J, Våge S.</bold> What difference does it make if viruses are strain-, rather than species-specific? Front Microbiol. 2015 Apr 20;6:320. <a href="https://doi.org/10.3389/fmicb.2015.00320" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fmicb.2015.00320</a>
  48. <bold>Tian F, Li J, Nazir A, Tong Y.</bold> Bacteriophage – A promising alternative measure for bacterial biofilm control. Infect Drug Resist. 2021 Jan 20;14:205–217. <a href="https://doi.org/10.2147/IDR.S290093" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2147/IDR.S290093</a>
  49. <bold>Topka-Bielecka G, Dydecka A, Necel A, Bloch S, Nejman-Faleńczyk B, Węgrzyn G, Węgrzyn A.</bold> Bacteriophage-derived depolymerases against bacterial biofilm. Antibiotics (Basel). 2021 Feb 10;10(2):175. <a href="https://doi.org/10.3390/antibiotics10020175" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/antibiotics10020175</a>
  50. <bold>Toyofuku M, Cárcamo-Oyarce G, Yamamoto T, Eisenstein F, Hsiao C-C, Kurosawa M, Gademann K, Pilhofer M, Nomura N, Eberl L.</bold> Prophage-triggered membrane vesicle formation through peptidoglycan damage in <em>Bacillus subtilis</em>. Nat Commun. 2017 Sep 7;8(1):481. <a href="https://doi.org/10.1038/s41467-017-00492-w" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41467-017-00492-w</a>
  51. <bold>Turnau K, Fiałkowska E, Ważny R, Rozpądek P, Tylko G, Bloch S, Nejman-Faleńczyk B, Grabski M, Węgrzyn A, Węgrzyn G.</bold> Extraordinary multi-organismal interactions involving bacteriophages, bacteria, fungi, and rotifers: Quadruple microbial trophic network in water droplets. Int J Mol Sci. 2021 Feb 22;22(4):2178. <a href="https://doi.org/10.3390/ijms22042178" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms22042178</a>
  52. <bold>Turnbull L, Toyofuku M, Hynen AL, Kurosawa M, Pessi G, Petty NK, Osvath SR, Cárcamo-Oyarce G, Gloag ES, Shimoni R, et al.</bold> Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat Commun. 2016 Apr 14;7: 11220. <a href="https://doi.org/10.1038/ncomms11220" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/ncomms11220</a>
  53. <bold>Wandro S, Oliver A, Gallagher T, Weihe C, England W, Martiny JBH, Whiteson K.</bold> Predictable molecular adaptation of coevolving <em>Enterococcus faecium</em> and lytic phage EfV12-phi1. Front Microbiol. 2019 Jan 31;9:3192. <a href="https://doi.org/10.3389/fmicb.2018.03192" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fmicb.2018.03192</a>
  54. <bold>Zalewska-Piątek B, Piątek R.</bold> Bacteriophages as potential tools for use in antimicrobial therapy and vaccine development. Pharmaceuticals (Basel). 2021 Apr 5;14(4):331. <a href="https://doi.org/10.3390/ph14040331" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ph14040331</a>
  55. <bold>Zhang Y, Li CX, Zhang XZ.</bold> Bacteriophage-mediated modulation of microbiota for diseases treatment. Adv Drug Deliv Rev. 2021 Sep; 176:113856. <a href="https://doi.org/10.1016/j.addr.2021.113856" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.addr.2021.113856</a>
DOI: https://doi.org/10.33073/pjm-2022-005 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 3 - 9
Submitted on: Nov 28, 2021
Accepted on: Jan 8, 2022
Published on: Feb 23, 2022
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Grzegorz Węgrzyn, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.