Have a personal or library account? Click to login

Biofilm Production Potential of Salmonella Serovars Isolated from Chickens in North West Province, South Africa

Open Access
|Nov 2020

References

  1. Akinola SA, Mwanza M, Ateba CN. Occurrence, genetic diversities and antibiotic resistance profiles of Salmonella serovars isolated from chickens. Infect Drug Resist. 2019;12:3327–3342. https://doi.org/10.2147/idr.s217421
  2. Almaguer-Flores A. Biofilms in the oral environment. In: Yan Y, editor. Bio-tribocorrosion in biomaterials and medical implants. Duxford (UK): Woodhead Publishing. 2013 Jan 1; p. 169–186. https://doi.org/10.1533/9780857098603.2.169
  3. Anderson TC, Nguyen TA, Adams JK, Garrett NM, Bopp CA, Baker JB, McNeil C, Torres P, Ettestad PJ, Erdman MM, Brinson DL. Multistate outbreak of human Salmonella Typhimurium infections linked to live poultry from agricultural feed stores and mail-order hatcheries, United States 2013. One Health. 2016 Dec 1;2: 144–149. https://doi.org/10.1016/j.onehlt.2016.08.002
  4. Arunasri K, Mohan SV. Biofilms: microbial life on the electrode surface. In: Mohan SV, Pandey A, Varjani S, editors. Microbial electrochemical technology sustainable platform for fuels, chemicals and remediation, biomass, biofuels and biochemicals. Amsterdam (Netherlands): Elsevier. 2019 Jan 1; p. 295–313. https://doi.org/10.1016/b978-0-444-64052-9.00011-x
  5. Balbontín R, Vlamakis H, Kolter R. Mutualistic interaction between Salmonella enterica and Aspergillus niger and its effects on Zea mays colonization. Microb Biotechnol. 2014 Nov;7(6):589–600. https://doi.org/10.1111/1751-7915.12182
  6. Benesty J, Chen J, Huang Y, Cohen I. Pearson correlation coefficient. In: Noise reduction in speech processing. Springer Topics in Signal Processing, vol 2. Berlin, Heidelberg (Germany): Springer. 2009; p. 1–4. https://doi.org/10.1007/978-3-642-00296-0_5
  7. Borges KA, Furian TQ, Souza SN, Menezes R, Tondo EC, Salle CT, Moraes HL, Nascimento VP. Biofilm formation capacity of Salmonella serotypes at different temperature conditions. Pesqui Vet Brasil. 2018 Jan;38(1):71–76. https://doi.org/10.1590/1678-5150-pvb-4928
  8. Bridier A, Briandet R, Bouchez T, Jabot F. A model-based approach to detect interspecific interactions during biofilm development. Biofouling. 2014 Aug 9;30(7):761–771. https://doi.org/10.1080/08927014.2014.923409
  9. Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F. Resistance of bacterial biofilms to disinfectants: a review. Biofouling. 2011 Oct 15;27(9):1017–1032. https://doi.org/10.1080/08927014.2011.626899
  10. Byrd-Bredbenner C. Food Safety. In: Rippe J, editor. Nutrition in Lifestyle Medicine. Nutrition and Health. Humana Press, Cham. 2017; p. 413–422. https://doi.org/10.1007/978-3-319-43027-0_23
  11. Chen D, Zhao T, Doyle MP. Single-and mixed-species biofilm formation by Escherichia coli O157:H7 and Salmonella, and their sensitivity to levulinic acid plus sodium dodecyl sulfate. Food Control. 2015 Nov 1;57:48–53. https://doi.org/10.1016/j.foodcont.2015.04.006
  12. Chmielewski RA, Frank JF. A predictive model for heat inactivation of Listeria monocytogenes biofilm on buna-N rubber. LWT-Food Sci Technol. 2006 Jan 1;39(1):11–19. https://doi.org/10.4315/0362-028x-67.12.2712
  13. Cook A, Odumeru J, Lee S, Pollari F. Campylobacter, Salmonella, Listeria monocytogenes, verotoxigenic Escherichia coli, and Escherichia coli prevalence, enumeration, and subtypes on retail chicken breasts with and without skin. J Food Protect. 2012 Jan;75(1):34–40. https://doi.org/10.4315/0362-028x.jfp-11-206
  14. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999 May 21;284(5418): 1318–1322. https://doi.org/10.1126/science.284.5418.1318
  15. Cui Y, Walcott R, Chen J. Attachment of various serovars of Salmonella enterica to vegetable seeds with different surface characteristics. Presented at: International Association for Food Protection (IAFP) Annual Meeting. IAFP 2015; Portland, OR.
  16. Dallal MM, Doyle MP, Rezadehbashi M, Dabiri H, Sanaei M, Modarresi S, Bakhtiari R, Sharifiy K, Taremi M, Zali MR, Sharifi-Yazdi MK. Prevalence and antimicrobial resistance profiles of Salmonella serotypes, Campylobacter and Yersinia spp. isolated from retail chicken and beef, Tehran, Iran. Food Control. 2010 Apr 1;21(4):388–392. https://doi.org/10.1016/j.foodcont.2009.06.001
  17. Davey ME, O’toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol R. 2000 Dec 1;64(4):847–867. https://doi.org/10.1128/mmbr.64.4.847-867.2000
  18. Díez-García M, Capita R, Alonso-Calleja C. Influence of serotype on the growth kinetics and the ability to form biofilms of Salmonella isolates from poultry. Food Microbiol. 2012 Sep 1;31(2):173–180. https://doi.org/10.1016/j.fm.2012.03.012
  19. Dourou D, Beauchamp CS, Yoon Y, Geornaras I, Belk KE, Smith GC, Nychas GJ, Sofos JN. Attachment and biofilm formation by Escherichia coli O157:H7 at different temperatures, on various food-contact surfaces encountered in beef processing. Int J Food Microbiol. 2011 Oct 3;149(3):262–268. https://doi.org/10.1016/j.ijfoodmicro.2011.07.004
  20. European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018 Dec;16(12):e05500. https://doi.org/10.2903/j.efsa.2011.2090
  21. Floyd KA, Eberly AR, Hadjifrangiskou M. Adhesion of bacteria to surfaces and biofilm formation on medical devices. In: Deng Y, Lv W, editors. Biofilms and implantable medical devices. Duxford (UK): Woodhead Publishing. 2017; p. 47–95. https://doi.org/10.1016/b978-0-08-100382-4.00003-4
  22. Giaouris E, Chorianopoulos N, Skandamis P, Nychas GJ. Attachment and biofilm formation by Salmonella in food processing environments. In: Mahmoud BSM, editor. Salmonella: A dangerous food borne pathogen. InTech. 2012; p. 157–180. https://doi.org/10.5772/28107
  23. Gordon MA, Graham SM, Walsh AL, Wilson L, Phiri A, Molyneux E, Zijlstra EE, Heyderman RS, Hart CA, Molyneux ME. Epidemics of invasive Salmonella enterica serovar Enteritidis and S. enterica Serovar Typhimurium infection associated with multidrug resistance among adults and children in Malawi. Clin Infect Dis. 2008 Apr 1;46(7):963–969. https://doi.org/10.1086/529146
  24. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004 Feb;2(2):95–108. https://doi.org/10.1038/nrmicro821
  25. Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections. Cell Microbiol. 2009 Jul;11(7):1034–1043. https://doi.org/10.1111/j.1462-5822.2009.01323.x
  26. Hur J, Jawale C, Lee JH. Antimicrobial resistance of Salmonella isolated from food animals: A review. Food Res Int. 2012 Mar 1;45(2): 819–830. https://doi.org/10.1016/j.foodres.2011.05.014
  27. Ikuma K, Decho AW, Lau BL. The extracellular bastions of bacteria – a biofilm way of life. Nature Education Knowledge. 2013;4(2):2–19.
  28. International Organization for Standardization. Microbiology of food and animal feeding stuffs: horizontal method for the detection of Salmonella spp. Detection of Salmonella spp. in animal faeces and in environmental samples from the primary production stage. Amendment 1, Annex D. Geneva (Switzerland): ISO. 2007.
  29. Irie Y, Parsek MR. Quorum sensing and microbial biofilms. In: Romeo T, editor. Bacterial Biofilms. Current Topics in Microbiology and Immunology, vol 322. Berlin, Heidelberg (Germany): Springer. 2008; p. 67–84. https://doi.org/10.1007/978-3-540-75418-3_4
  30. Isoken HI. Biofilm formation of Salmonella species isolated from fresh cabbage and spinach. JAppl Sci Environ Manage. 2015;19(1): 45–50. https://doi.org/10.4314/jasem.v19i1.6
  31. Iturriaga MH, Tamplin ML, Escartin EF. Colonization of tomatoes by Salmonella Montevideo is affected by relative humidity and storage temperature. J Food Protect. 2007 Jan;70(1):30–34. https://doi.org/10.4315/0362-028x-70.1.30
  32. Karkey A, Jombart T, Walker AW, Thompson CN, Torres A, Dongol S, Tran Vu Thieu N, Pham Thanh D, Tran Thi Ngoc D, Voong Vinh P, Singer AC. The ecological dynamics of fecal contamination and Salmonella Typhi and Salmonella Paratyphi A in municipal Kathmandu drinking water. PLoS Neglect Trop D. 2016 Jan 6;10(1):e0004346. https://doi.org/10.1371/journal.pntd.0004346
  33. Khan MS, Altaf MM, Ahmad I. Chemical nature of biofilm matrix and its significance. In: Ahmad I, Husain FM, editors. Biofilms in Plant and Soil Health. Hoboken (USA): John Wiley & Sons Ltd. 2017. https://doi.org/10.1002/9781119246329.ch9
  34. Koo H, Yamada KM. Dynamic cell-matrix interactions modulate microbial biofilm and tissue 3D microenvironments. Curr Opin Cell Biol. 2016 Oct 1;42:102–112. https://doi.org/10.1016/j.ceb.2016.05.005
  35. Kroupitski Y, Golberg D, Belausov E, Pinto R, Swartzberg D, Granot D, Sela S. Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata. Appl Environ Microb. 2009 Oct 1;75(19):6076–6086. https://doi.org/10.1128/aem.01084-09
  36. Li J, Feng J, Ma L, de la Fuente Núñez C, Gölz G, Lu X. Effects of meat juice on biofilm formation of Campylobacter and Salmonella. Int J Food Microbiol. 2017 Jul 17;253:20–28. https://doi.org/10.1016/j.ijfoodmicro.2017.04.013
  37. Li YH, Tian X. Quorum sensing and bacterial social interactions in biofilms. Sensors. 2012 Mar;12(3):2519–2538. https://doi.org/10.3390/s120302519
  38. Mah TF, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001 Jan 1;9 (1):34–39. https://doi.org/10.1016/s0966-842x(00)01913-2
  39. Malangu N, Ogunbanjo GA. A profile of acute poisoning at selected hospitals in South Africa. South Afr J Epidemiol Infect. 2009 Jan 1;24(2):14–16.
  40. Merino L, Procura F, Trejo FM, Bueno DJ, Golowczyc MA. Biofilm formation by Salmonella sp. in the poultry industry: Detection, control and eradication strategies. Food Res Int. 2019 May 1;119:530–540. https://doi.org/10.1016/j.foodres.2017.11.024
  41. Moosdeen F, Williams JD, Secker A. Standardization of inoculum size for disc susceptibility testing: a preliminary report of a spectrophotometric method. J Antimicrob Chemoth. 1988 Apr 1;21(4): 439–443. https://doi.org/10.1093/jac/21.4.439
  42. Motladiile TW. Salmonella food-poisoning outbreak linked to the National School Nutrition Programme, North West province, South Africa. South Afr J Infect Dis. 2019;34(1):1–6. https://doi.org/10.4102/sajid.v34i1.124
  43. Mukaka MM. A guide to appropriate use of correlation coefficient in medical research. Malawi Med J. 2012;24(3):69–71.
  44. Mulamattathil SG, Bezuidenhout C, Mbewe M. Biofilm formation in surface and drinking water distribution systems in Mafikeng, South Africa. S Afr J Sci. 2014 Dec;110(11–12):01–09. https://doi.org/10.1590/sajs.2014/20130306
  45. Muvhali M, Smith AM, Rakgantso AM, Keddy KH. Investigation of Salmonella Enteritidis outbreaks in South Africa using multilocus variable-number tandem-repeats analysis, 2013–2015. BMC Infect Dis. 2017 Dec 1;17(1):661. https://doi.org/10.1186/s12879-017-2751-8
  46. Niehaus AJ, Apalata T, Coovadia YM, Smith AM, Moodley P. An outbreak of foodborne salmonellosis in rural KwaZulu-Natal, South Africa. Foodborne Pathog Dis. 2011 Jun 1;8(6):693–697. https://doi.org/10.1089/fpd.2010.0749
  47. Papa R, Bado I, Iribarnegaray V, Gonzalez MJ, Zunino P, Scavone P, Vignoli R. Biofilm formation in carbapenemase-producing Pseudomonas spp. and Acinetobacter baumannii clinical isolates. Int J Infect Dis. 2018 Aug 1;73:119–120. https://doi.org/10.1016/j.ijid.2018.04.3688
  48. Patel R. Biofilms and antimicrobial resistance. Clin Orthop Relat R. 2005 Aug 1;437:41–47. https://doi.org/10.1097/01.blo.0000175714.68624.74
  49. Rendueles O, Kaplan JB, Ghigo JM. Antibiofilm polysaccharides. Environ Microbiol. 2013 Feb;15(2):334–346. https://doi.org/10.1111/j.1462-2920.2012.02810.x
  50. Römling U, Sierralta WD, Eriksson K, Normark S. Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol Microbiol. 1998 Apr;28(2):249–264. https://doi.org/10.1046/j.1365-2958.1998.00791.x
  51. Sadekuzzaman M, Yang S, Mizan MF, Ha SD. Current and recent advanced strategies for combating biofilms. Compr Rev Food Sci F. 2015 Jul;14(4):491–509. https://doi.org/10.1111/1541-4337.12144
  52. Sharma D, Misba L, Khan AU. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist In. 2019 Dec;8(76):1–10. https://doi.org/10.1186/s13756-019-0533-3
  53. Shi X, Zhu X. Biofilm formation and food safety in food industries. Trends Food Sci Tech. 2009 Sep 1;20(9):407–413. https://doi.org/10.1016/j.tifs.2009.01.054
  54. Silagyi K, Kim SH, Lo YM, Wei CI. Production of biofilm and quorum sensing by Escherichia coli O157:H7 and its transfer from contact surfaces to meat, poultry, ready-to-eat deli, and produce products. Food Microbiol. 2009 Aug 1;26(5):514–519. https://doi.org/10.1016/j.fm.2009.03.004
  55. Sofos JN, Geornaras I. Overview of current meat hygiene and safety risks and summary of recent studies on biofilms, and control of Escherichia coli O157:H7 in nonintact, and Listeria monocytogenes in ready-to-eat, meat products. Meat Sci. 2010 Sep 1;86(1):2–14. https://doi.org/10.1016/j.meatsci.2010.04.015
  56. Solano C, García B, Valle J, Berasain C, Ghigo JM, Gamazo C, Lasa I. Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol. 2002 Feb;43(3):793–808. https://doi.org/10.1046/j.1365-2958.2002.02802.x
  57. Soo Lee I, Lin J, Hall HK, Bearson B, Foster JW. The stationary-phase sigma factor σS (RpoS) is required for a sustained acid tolerance response in virulent Salmonella Typhimurium. Mol Microbiol. 1995 Jul;17(1):155–167. https://doi.org/10.1111/j.1365-2958.1995.mmi_17010155.x
  58. Steenackers H, Hermans K, Vanderleyden J, De Keersmaecker SC. Salmonella biofilms: an overview on occurrence, structure, regulation and eradication. Food Res Int. 2012 Mar 1;45(2):502–531. https://doi.org/10.1016/j.foodres.2011.01.038
  59. Stepanović S, Ćirković I, Ranin L, Svabić-Vlahović M. Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett Appl Microbiol. 2004 May;38(5):428–432. https://doi.org/10.1111/j.1472-765x.2004.01513.x
  60. Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Meth. 2000 Apr 1;40(2):175–179. https://doi.org/10.1016/s0167-7012(00)00122-6
  61. Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001 Jul 14;358(9276):135–138. https://doi.org/10.1016/s0140-6736(01)05321-1
  62. Suehr Q, Jeong S, Marks BP. Modeling of cross-contamination of Salmonella during almond processing. Presented at: International Association for Food Protection (IAFP) Annual Meeting; IAFP 2015; Portland, OR.
  63. Tanaka MH, Lima GM, Ito CK. Biology of the oral environment and its impact on the stability of dental and craniofacial reconstructions. In: Spencer P, Misra A, editors. Material-tissue interfacial phenomena. Duxford (UK): Woodhead Publishing. 2017; p. 181–202. https://doi.org/10.1016/b978-0-08-100330-5.00007-8
  64. Wang H, Ye K, Wei X, Cao J, Xu X, Zhou G. Occurrence, antimicrobial resistance and biofilm formation of Salmonella isolates from a chicken slaughter plant in China. Food Control. 2013 Oct 1;33(2):378–384. https://doi.org/10.1016/j.foodcont.2013.03.030
  65. Webber B, Oliveira AP, Pottker ES, Daroit L, Levandowski R, Santos LR, Nascimento VP, Rodrigues LB. Salmonella Enteritidis forms biofilm under low temperatures on different food industry surfaces. Ciênc Rural. 2019;49(7):e20181022. https://doi.org/10.1590/0103-8478cr20181022
  66. Yang Y, Mikš-Krajnik M, Zheng Q, Lee SB, Lee SC, Yuk HG. Biofilm formation of Salmonella Enteritidis under food-related environmental stress conditions and its subsequent resistance to chlorine treatment. Food Microbiol. 2016 Apr 1;54:98–105. https://doi.org/10.1016/j.fm.2015.10.010
  67. Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol. 2001 Mar;39(6):1452–1463. https://doi.org/10.1046/j.1365-2958.2001.02337.x
DOI: https://doi.org/10.33073/pjm-2020-046 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 427 - 439
Submitted on: Aug 10, 2020
Accepted on: Sep 24, 2020
Published on: Nov 23, 2020
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 STEPHEN ABIOLA AKINOLA, MPINDA EDOAURD TSHIMPAMBA, MULUNDA MWANZA, COLLINS NJIE ATEBA, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.