Have a personal or library account? Click to login
Method of evaluation and quality control by means of Y performance curves and RPC curves of Six Sigma metrics of a concurrent system Cover

Method of evaluation and quality control by means of Y performance curves and RPC curves of Six Sigma metrics of a concurrent system

Open Access
|Dec 2025

References

  1. Badawi, S. A., Et al., 2023. Enhancing vessel segment extraction in retinal fundus images using retinal image analysis and Six Sigma process capability index. Mathematics, 11(14), 3170. DOI: 10.3390/math11143170
  2. Benavides, K. G., Coronell, L. P., & Fontalvo, T., 2023. Comparing the performance of serial and parallel production systems through six sigma metrics. International Journal of Productivity and Quality Management, 1(1). DOI: 10.1504/ijpqm.2023.10058514
  3. Buestan, M., & Perez, C., 2022. Identification of predictive nursing workload factors: A Six Sigma approach. Sustainability, 14(20), 13169. DOI: 10.3390/su142013169
  4. Caballero, S., Et al., 2023. Six-Sigma reference model for industry 4.0 implementations in textile SMEs. Sustainability, 15(16), 12589. DOI: 10.3390/su151612589
  5. Chong, Z. L., Et al., 2022. Optimal designs of the exponentially weighted moving average (EWMA) median chart for known and estimated parameters based on median run length. Communications in Statistics: Simulation and Computation, 51(7), 3660–3684. DOI: 10.1080/03610918.2020.1721539
  6. Cruz, L. E., García, H. D., Garay, G., & Mantecón, O. (2024). Effectiveness of the application of the Six Sigma model for the productivity of an organic banana exporting company. Journal of Advanced Research in Applied Sciences and Engineering Technology, 63–75. DOI: 10.37934/araset.53.2.6375
  7. Dhingra, S., Et al., 2022. Improvement in dents at gear manufacturer company through lean six sigma., 2022 International Conference on Computational Modelling, Simulation and Optimization (ICCMSO).
  8. Escobar, C. A., Macias, D., McGovern, M., Hernandez-de-Menendez, M., & Morales-Menendez, R., 2024. Quality 4.0 – an evolution of Six Sigma DMAIC. International Journal of Lean Six Sigma, 1-15, DOI: 10.1108/IJLSS-05-2021-0091
  9. Ezewu, K., Emumena, S., & Amagre, M. (2024). DMAIC approach to using confidence intervals to asses conformance and reduce variation in net weigth for a manufactured product: a case study. International Journal of Six Sigma and Competitive Advantage, 15(1), 1-18. doi:10.1504/IJSSCA.2024.139597
  10. Faishal, M, Et al. (2024). The use of Lean Six Sigma to improve the quality of coconut shell briquette products. Multidisciplinary Science Journal, 6(1). https://malquepub.com/index.php/multiscience/article/view/119
  11. Fontalvo, T. J., & Banquez, A. G., 2023. Comparative analysis of multivariate capacity indicators for serial and parallel systems. International Journal of Six Sigma and Competitive Advantage, 14(4), 468–489. DOI: 10.1504/ijssca.2023.134454
  12. Fontalvo, T. J., Banquez, A. G., & Mendoza, K., 2024a. Performance of a concurrent parallel production system through new operating curves of Six Sigma metrics. Production, 34. DOI: 10.1590/0103-6513.20230040
  13. Fontalvo, T., Mejia, F., & Oyuela, G., 2024b. Evaluación con curvas de operación de métricas Seis Sigma el desempeño de sistemas productivos mixtos. Investigacion e Innovación en Ingenierias, 12(1), 1–12. DOI: 10.17081/invinno.11.2.6680
  14. Fontalvo, T. J., Ballesteros, F., & Henao, N., 2023. New six sigma metrics operation curves and multivariate capability indicators for a multilinear production system. Heliyon,(In press) DOI: 10.2139/ssrn.4498561
  15. Fontalvo, T., Acosta, R. H., & Maturana, A. G. B., 2024c. Performance evaluation method of the service quality dimensions using Six Sigma metrics, the main components’ quality indicator and the geometric capacity indicator. Engineering Management in Production and Services, 16(1), 65–76. DOI: 10.2478/emj-2024-0005
  16. Gai, Y., Et al., 2022. Minimizing makespan of a production batch within concurrent systems: Seru production perspective. Journal of Management Science and Engineering, 7(1), 1–18. DOI: 10.1016/j.jmse.2020.10.002
  17. Garg, C. P., & Agrawal, V., 2023. Evaluation of key performance indicators of Indian airlines using fuzzy AHP method. International Journal of Business Performance Management, 24(1), 1-21. DOI: 10.1504/IJBPM.2023.127509
  18. Gan, T.-S., Et al., 2022. Concurrent design of product and supply chain architectures for modularity and flexibility: process, methods, and application. International Journal of Production Research, 60(7), 2292–2311. DOI: 10.1080/00207543.2021.1886370
  19. Goharshenasan, A., Et al., 2022. Identifying and classifying sustainable supply chain performance indicators: a GRI-based multivariate analysis. International Journal of Industrial and Systems Engineering, 41(1), 41. DOI: 10.1504/ijise.2022.122972
  20. Goli, A., & Alinaghian, M., 2020. A new mathematical model for production and delivery scheduling problem with common cycle in a supply chain with open-shop system. International Journal of Manufacturing Technology and Management, 34(2), 174. DOI: 10.1504/ijmtm.2020.106206
  21. Haq, A., & Woodall, W. H., 2022. A note on an average run length calculation for the EWMA and other charts. Quality and Reliability Engineering International, 38(8), 4351–4355. DOI: 10.1002/qre.3214
  22. Hu, X., Et al., 2023. Conditional design of the Shewhart X̄ chart with unknown process parameters based on median run length. European J of Industrial Engineering, 17(1), 90. DOI: 10.1504/ejie.2023.127753
  23. Joshi, K., & Patil, B., 2022. Multivariate statistical process monitoring and control of machining process using principal component-based Hotelling T2 charts: a machine vision approach. International Journal of Productivity and Quality Management, 35(1), 40. DOI: 10.1504/ijpqm.2022.120709
  24. Khadse, K. G., & Shinde, R. L., 2021. A new probability-based multivariate process capability index. International Journal of Quality Engineering and Technology, 8(3), 249. DOI: 10.1504/ijqet.2021.116757
  25. Krishnan, S., Mathiyazhagan, K., & Sreedharan, V. R., 2022. Developing a hybrid approach for lean six sigma project management: A case application in the reamer manufacturing industry. IEEE transactions on engineering management, 69(6), 2897–2914. DOI: 10.1109/tem.2020.3013695
  26. Langle Flores, M., Malacara Navejar, J., & Castillo Carillo, M. (2024). Herramientas estadísticas Seis Sigma aplicadas a. CULCYT. Cultura Científica y Tecnológica, 21(3), 5-23. doi:10.20983/culcyt.2024.3.2.1
  27. Lin, S., Et al., 2022. Comparative performance of eight ensemble learning approaches for the development of models of slope stability prediction. Acta Geotechnica, 17(4), 1477–1502. DOI: 10.1007/s11440-021-01440-1
  28. Menacé, M., Et al., 2023. Evaluación del rendimiento de abonos orgánicos en el desarrollo vegetativo y producción de la soya (Glycine max). Código Científico Revista de Investigación, 4(E2), 326–342. DOI: 10.55813/gaea/ccri/v4/ne2/210
  29. Muangngam, T., Areepong, Y., & Sukparungsee, S., 2022. Approximation of average run length on extended EWMA control chart for autoregressive process with explanatory variables using numerical integral equation method. Journal of physics. Conference series, 2346(1), 012002. DOI: 10.1088/1742-6596/2346/1/012002
  30. Najm, A., Ridha, M. B., & Aboyasin, N., 2022. Six Sigma and market performance in Jordanian hospitals. International Journal of Value Chain Management, 13(2), 141. DOI: 10.1504/ijvcm.2022.123547
  31. Ndrecaj, V., Et al., 2023. Exploring Lean Six Sigma as dynamic capability to enable sustainable performance optimisation in times of uncertainty. Sustainability, 15(23), 16542. DOI: 10.3390/su152316542
  32. Paichit, P., & Petcharat, K., 2022. An approximation of average run length using numerical integration methods on EWMA control chart for MAX(q,r) process. The Journal of Applied Science, 21(1), 247274–247274. DOI: 10.14416/j.appsci.2022.01.005
  33. Patel, M. T., & Desai, D., 2023. Implementation of Six Sigma in the small-scale ceramic industry and its holistic assessment. International Journal of Quality Engineering and Technology, 9(2), 110–144. DOI: 10.1504/ijqet.2023.131553
  34. Phanthuna, P., Areepong, Y., & Sukparungsee, S., 2023. Run length distribution for a modified EWMA scheme fitted with a stationary AR(p) model. Communications in Statistics: Simulation and Computation, 52(9), 4260–4279. DOI: 10.1080/03610918.2021.1958847
  35. Pierce, A., Et al., 2023. Using Lean Six Sigma in a private hospital setting to reduce trauma orthopedic patient waiting times and associated administrative and consultant caseload. Healthcare (Basel, Switzerland), 11(19), 2626. DOI: 10.3390/healthcare11192626
  36. Qiao, Y., Et al., 2022. Optimal design of one-sided exponential EWMA charts based on median run length and expected median run length. Communications in Statistics: Theory and Methods, 51(9), 2887–2907. DOI: 10.1080/03610926.2020.1782937
  37. Sallam, M., & Snygg, J., 2023. Improving antimicrobial stewardship program using the Lean Six Sigma methodology: A descriptive study from Medi-clinic Welcare Hospital in Dubai, the UAE. Healthcare (Basel, Switzerland), 11(23), 3048. DOI: 10.3390/healthcare11233048
  38. Shokry, A., Et al., 2023. Six Sigma Analysis of mini-plate fixation systems used in human mandible fractures: A clinical case study of symphysis fracture. Applied Sciences (Basel, Switzerland), 13(22), 12501. DOI: 10.3390/app132212501
  39. Skalli, D., Et al., 2024. Integrating Lean Six Sigma and Industry 4.0: developing a design science research-based LSS4.0 framework for operational excellence. Production Planning & Control, 1–27. DOI: 10.1080/09537287.2024.2341698
  40. Sodhi, H. S., 2023. A comparative analysis of lean manufacturing, Six Sigma and Lean Six Sigma for their application in manufacturing organisations. International Journal of Process Management and Benchmarking, 13(1), 127. DOI: 10.1504/ijpmb.2023.127902
  41. Sunthornwat, R., Sukparungsee, S., & Areepong, Y., 2023. Analytical explicit formulas of average run length of homogenously weighted moving average control chart based on a MAX process. Symmetry, 15(12), 2112. DOI: 10.3390/sym15122112
  42. Tang, W., Li, S., & Li, H., 2023. Algebraic modelling of concurrent systems and its practical application. International Journal of Computing Science and Mathematics, 18(2), 138–151. DOI: 10.1504/ijcsm.2023.133640
  43. Tuh, M. H., Et al., 2023. Evaluating the performance of synthetic double sampling np chart based on expected median run length. Mathematics, 11(3), 595. DOI: 10.3390/math11030595
  44. Verheyen, J., & Stoks, R., 2023. Thermal performance curves in a polluted world: Too cold and too hot temperatures synergistically increase pesticide toxicity. Environmental Science & Technology, 57(8), 3270–3279. DOI: 10.1021/acs.est.2c07567
  45. Wu, S., Et al., 2023. Design of attribute EWMA type control charts with reliable run length performance. Communications in Statistics: Simulation and Computation, 52(9), 4193–4209. DOI: 10.1080/03610918.2021.1955263
  46. You, H. W., Et al., 2023. An expected average run length (ERPC) performance comparison of the SSGR and EWMA control charts. International Journal of Integrated Engineering, 15(5), 35–40. DOI: 10.30880/ijie.2023.15.05.005
  47. Zhang, Y., Et al., 2023. Nonlinear multiphase batch process monitoring and quality prediction using multi-way concurrent locally weighted projection regression. Chemometrics and Intelligent Laboratory Systems: An International Journal Sponsored by the Chemometrics Society, 240(104922), 104922. DOI: 10.1016/j.chemolab.2023.104922
DOI: https://doi.org/10.30657/pea.2025.31.47 | Journal eISSN: 2353-7779 | Journal ISSN: 2353-5156
Language: English
Page range: 504 - 516
Submitted on: May 28, 2024
Accepted on: Oct 10, 2025
Published on: Dec 6, 2025
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Tomás Fontalvo, Ana Banquez, Andrea Fontalvo, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution 4.0 License.