Have a personal or library account? Click to login
Improvement of the cantilever test geometry deflection measurement method to assess residual stresses in laser powder bed fusion Cover

Improvement of the cantilever test geometry deflection measurement method to assess residual stresses in laser powder bed fusion

By: Istvan Hatos  
Open Access
|Dec 2025

References

  1. Acevedo, R., Sedlak, P., Kolman, R., Fredel, M. 2020. Residual stress analysis of additive manufacturing of metallic parts using ultrasonic waves: State of the art review. Journal of Materials Research and Technology, 9(4), 9457-9477. DOI: 10.1016/j.jmrt.2020.05.092
  2. Ali, H., Ma, L., Ghadbeigi, H., Mumtaz, K. 2017. In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V. Materials Science and Engineering: A, 695, 211-220. DOI: 10.1016/j.msea.2017.04.033
  3. Alzyod, H., Ficzere, P. 2022. Finite Element Modeling of Additive Manufacturing in Case of Metal Parts. Periodica Polytechnica Transportation Engineering, 50(4), 330-335. DOI: 10.3311/PPtr.19242
  4. Bernard, A., Kruth, J.-P., Cao, J., Lanza, G., Bruschi, S., Merklein, M., Vaneker, T., et al. 2023. Vision on metal additive manufacturing: Developments, challenges and future trends. CIRP Journal of Manufacturing Science and Technology, 47, 18-58. DOI: 10.1016/j.cirpj.2023.08.005
  5. Buchbinder, D., Meiners, W., Pirch, N., Wissenbach, K., Schrage, J. 2013. Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting. Journal of Laser Applications, 26(1), 012004. DOI: 10.2351/1.4828755
  6. Chen, C., Chang, S., Zhu, J., Xiao, Z., Zhu, H., Zeng, X. 2020. Residual stress of typical parts in laser powder bed fusion. Journal of Manufacturing Processes, 59, 621-628. DOI: 10.1016/j.jmapro.2020.10.009
  7. Edin, E., Svahn, F., Åkerfeldt, P., Eriksson, M., Antti, M.-L. 2022. Rapid method for comparative studies on stress relief heat treatment of additively manufactured 316L. Materials Science and Engineering: A, 847, 143313. DOI: 10.1016/j.msea.2022.143313
  8. Erőss, L.D., Markovits, T. 2024. Mass reduction method for topology optimisation of a Ti6Al4V part for additive manufacturing. Production Engineering Archives, 30(3), 354-360. DOI: 10.30657/pea.2024.30.35
  9. Hanzl, P., Zetková, I., Daňa, M., Nozar, M. 2020. Advanced Simulation of Metal Additive Manufacturing Using Maraging Steel and Nickel Alloy. Manufacturing Technology, 20(3), 313-317. DOI: 10.21062/mft.2020.045
  10. Hatos, I., Hargitai, H., Kovács, J.G. 2017. Characterization of Internal Stresses in Hybrid Steel Structures Produced by Direct Metal Laser Sintering. Materials Science Forum, 885, 196-201. DOI: 10.4028/www.scientific.net/MSF.885.196
  11. Hatos, I., Hargitai, H., Fekete, G., Fekete, I. 2024. Effect of Energy Density on the Mechanical Properties of 1.2709 Maraging Steel Produced by Laser Powder Bed Fusion. Materials, 17(14), 3432. DOI: 10.3390/ma17143432
  12. Jin, Q.-Y., Kang, D., Ha, K., Yu, J.H., Lee, W. 2022. Simulation of annealing process on AISI 316 L stainless steel fabricated via laser powder bed fusion using finite element method with creep. Additive Manufacturing, 60, 103255. DOI: 10.1016/j.addma.2022.103255
  13. Kazemi Movahed, A., Ghanavati, R., Saboori, A., Iuliano, L. 2025. A Review of Strategies for In Situ Mitigating of Residual Stress in Laser-Based Metal Additive Manufacturing: Insights, Innovations, and Challenges. Acta Metallurgica Sinica (English Letters), 38(10), 1657-1698. DOI: 10.1007/s40195-025-01902-5
  14. Kulcsar, K., Zsoldos, I. 2024. Mechanical Studies of Subperiosteal Implants. Periodica Polytechnica Mechanical Engineering, 68(1), 53-62. DOI: 10.3311/PPme.23706
  15. Le Roux, S., Salem, M., Hor, A. 2018. Improvement of the bridge curvature method to assess residual stresses in selective laser melting. Additive Manufacturing, 22, 320-329. DOI: 10.1016/j.addma.2018.05.025
  16. Lendvai, L., Fekete, I., Rigotti, D., Pegoretti, A. 2025. Experimental study on the effect of filament-extrusion rate on the structural, mechanical and thermal properties of material extrusion 3D-printed polylactic acid (PLA) products. Progress in Additive Manufacturing, 10(1), 619-629. DOI: 10.1007/s40964-024-00646-5
  17. Levkulich, N.C., Semiatin, S.L., Gockel, J.E., Middendorf, J.R., DeWald, A.T., Klingbeil, N.W. 2019. The effect of process parameters on residual stress evolution and distortion in the laser powder bed fusion of Ti-6Al-4V. Additive Manufacturing, 28, 475-484. DOI: 10.1016/j.addma.2019.05.015
  18. Li, Z., Xu, R., Zhang, Z., Kucukkoc, I. 2018. The influence of scan length on fabricating thin-walled components in selective laser melting. International Journal of Machine Tools and Manufacture, 126, 1-12. DOI: 10.1016/j.ijmachtools.2017.11.012
  19. Mahtabi, M., Yadollahi, A., Stokes, R., Doude, H., Priddy, M. 2023. Effect of build interruption during laser powder bed fusion process on structural integrity of Ti-6Al-4V. Engineering Failure Analysis, 153, 107626. DOI: 10.1016/j.engfailanal.2023.107626
  20. Martucci, A., Marchese, G., Bassini, E., Lombardi, M. 2023. Effects of Stress-Relieving Temperature on Residual Stresses, Microstructure and Mechanical Behaviour of Inconel 625 Processed by PBF-LB/M. Metals, 13(4), 796. DOI: 10.3390/met13040796
  21. Meier, B., Godja, N., Warchomicka, F., Belei, C., Schäfer, S., Schindel, A., Palcynski, G., et al. 2022. Influences of Surface, Heat Treatment, and Print Orientation on the Anisotropy of the Mechanical Properties and the Impact Strength of Ti 6Al 4V Processed by Laser Powder Bed Fusion. Journal of Manufacturing and Materials Processing, 6(4), 87. DOI: 10.3390/jmmp6040087
  22. Mohammadtaheri, H., Sedaghati, R., Molavi-Zarandi, M. 2022. Inherent strain approach to estimate residual stress and deformation in the laser powder bed fusion process for metal additive manufacturing—a state-of-the-art review. The International Journal of Advanced Manufacturing Technology, 122(5-6), 2187-2202. DOI: 10.1007/s00170-022-10052-2
  23. Mugwagwa, L., Dimitrov, D., Matope, S., Yadroitsev, I. 2018. Influence of process parameters on residual stress related distortions in selective laser melting. Procedia Manufacturing, 21, 92-99. DOI: 10.1016/j.promfg.2018.02.099
  24. Mugwagwa, L., Yadroitsev, I., Matope, S. 2019. Effect of Process Parameters on Residual Stresses, Distortions, and Porosity in Selective Laser Melting of Maraging Steel 300. Metals, 9(10), 1042. DOI: 10.3390/met9101042
  25. Noll, I., Koppka, L., Bartel, T., Menzel, A. 2022. A micromechanically motivated multiscale approach for residual distortion in laser powder bed fusion processes. Additive Manufacturing, 60, 103277. DOI: 10.1016/j.addma.2022.103277
  26. Orosz, T., Horváth, T., Tóth, B., Kuczmann, M., Kocsis, B. 2023. Iron Loss Calculation Methods for Numerical Analysis of 3D-Printed Rotating Machines: A Review. Energies, 16(18), 6547. DOI: 10.3390/en16186547
  27. Paraschiv, A., Matache, G., Vladut, M. 2024. Assessment of Residual Stresses in Laser Powder Bed Fusion Manufactured IN 625. Materials, 17(2), 413. DOI: 10.3390/ma17020413
  28. Pauzon, C., Mishurova, T., Evsevleev, S., Dubiez-Le Goff, S., Murugesan, S., Bruno, G., Hryha, E. 2021. Residual stresses and porosity in Ti-6Al-4V produced by laser powder bed fusion as a function of process atmosphere and component design. Additive Manufacturing, 47, 102340. DOI: 10.1016/j.addma.2021.102340
  29. Roberts, A. 2001. Curvature attributes and their application to 3D interpreted horizons. First Break, 19(2), 85-100. DOI: 10.1046/j.0263-5046.2001.00142.x
  30. Robinson, J., Ashton, I., Fox, P., Jones, E., Sutcliffe, C. 2018. Determination of the effect of scan strategy on residual stress in laser powder bed fusion additive manufacturing. Additive Manufacturing, 23, 13-24. DOI: 10.1016/j.addma.2018.07.001
  31. Salem, M., Le Roux, S., Hor, A., Dour, G. 2020. A new insight on the analysis of residual stresses related distortions in selective laser melting of Ti-6Al-4V using the improved bridge curvature method. Additive Manufacturing, 36, 101586. DOI: 10.1016/j.addma.2020.101586
  32. Szachogłuchowicz, I., Fikus, B., Grzelak, K., Kluczyński, J., Torzewski, J., Łuszczek, J. 2021. Selective Laser Melted M300 Maraging Steel—Material Behaviour during Ballistic Testing. Materials, 14(10), 2681. DOI: 10.3390/ma14102681
  33. Xie, D., Lv, F., Yang, Y., Shen, L., Tian, Z., Shuai, C., Chen, B., et al. 2022. A Review on Distortion and Residual Stress in Additive Manufacturing. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 1(3), 100039. DOI: 10.1016/j.cjmeam.2022.100039
  34. Yu, J.H., Jin, Q.-Y., Ha, K., Lee, W. 2023. Influence of Several Heat Treatments on Residual Stress in Laser Powder Bed-Fused Maraging 18Ni-300 Steel. Applied Sciences, 13(11), 6572. DOI: 10.3390/app13116572
  35. Zaeh, M.F., Branner, G. 2010. Investigations on residual stresses and deformations in selective laser melting. Production Engineering, 4(1), 35-45. DOI: 10.1007/s11740-009-0192-y
  36. Zhang, Y., Lin, W., Zhai, Z., Wu, Y., Yang, R., Zhang, Z. 2023. Enhancing the mechanical property of laser powder bed fusion CoCrMo alloy by tailoring the microstructure and phase constituent. Materials Science and Engineering: A, 862, 144449. DOI: 10.1016/j.msea.2022.144449
  37. Zink, B., Kovács, N.K., Kovács, J.G. 2019. Thermal analysis based method development for novel rapid tooling applications. International Communications in Heat and Mass Transfer, 108, 104297. DOI: 10.1016/j.icheatmasstransfer.2019.104297
  38. Zou, S., Pang, L., Xu, C., Xiao, X. 2022. Effect of Process Parameters on Distortions Based on the Quantitative Model in the SLM Process. Applied Sciences, 12(3), 1567. DOI: 10.3390/app12031567
DOI: https://doi.org/10.30657/pea.2025.31.44 | Journal eISSN: 2353-7779 | Journal ISSN: 2353-5156
Language: English
Page range: 474 - 480
Submitted on: Apr 13, 2025
Accepted on: Oct 29, 2025
Published on: Dec 6, 2025
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Istvan Hatos, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution 4.0 License.