References
- Acevedo, R., Sedlak, P., Kolman, R., Fredel, M. 2020. Residual stress analysis of additive manufacturing of metallic parts using ultrasonic waves: State of the art review. Journal of Materials Research and Technology, 9(4), 9457-9477. DOI: 10.1016/j.jmrt.2020.05.092
- Ali, H., Ma, L., Ghadbeigi, H., Mumtaz, K. 2017. In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V. Materials Science and Engineering: A, 695, 211-220. DOI: 10.1016/j.msea.2017.04.033
- Alzyod, H., Ficzere, P. 2022. Finite Element Modeling of Additive Manufacturing in Case of Metal Parts. Periodica Polytechnica Transportation Engineering, 50(4), 330-335. DOI: 10.3311/PPtr.19242
- Bernard, A., Kruth, J.-P., Cao, J., Lanza, G., Bruschi, S., Merklein, M., Vaneker, T., et al. 2023. Vision on metal additive manufacturing: Developments, challenges and future trends. CIRP Journal of Manufacturing Science and Technology, 47, 18-58. DOI: 10.1016/j.cirpj.2023.08.005
- Buchbinder, D., Meiners, W., Pirch, N., Wissenbach, K., Schrage, J. 2013. Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting. Journal of Laser Applications, 26(1), 012004. DOI: 10.2351/1.4828755
- Chen, C., Chang, S., Zhu, J., Xiao, Z., Zhu, H., Zeng, X. 2020. Residual stress of typical parts in laser powder bed fusion. Journal of Manufacturing Processes, 59, 621-628. DOI: 10.1016/j.jmapro.2020.10.009
- Edin, E., Svahn, F., Åkerfeldt, P., Eriksson, M., Antti, M.-L. 2022. Rapid method for comparative studies on stress relief heat treatment of additively manufactured 316L. Materials Science and Engineering: A, 847, 143313. DOI: 10.1016/j.msea.2022.143313
- Erőss, L.D., Markovits, T. 2024. Mass reduction method for topology optimisation of a Ti6Al4V part for additive manufacturing. Production Engineering Archives, 30(3), 354-360. DOI: 10.30657/pea.2024.30.35
- Hanzl, P., Zetková, I., Daňa, M., Nozar, M. 2020. Advanced Simulation of Metal Additive Manufacturing Using Maraging Steel and Nickel Alloy. Manufacturing Technology, 20(3), 313-317. DOI: 10.21062/mft.2020.045
- Hatos, I., Hargitai, H., Kovács, J.G. 2017. Characterization of Internal Stresses in Hybrid Steel Structures Produced by Direct Metal Laser Sintering. Materials Science Forum, 885, 196-201. DOI: 10.4028/www.scientific.net/MSF.885.196
- Hatos, I., Hargitai, H., Fekete, G., Fekete, I. 2024. Effect of Energy Density on the Mechanical Properties of 1.2709 Maraging Steel Produced by Laser Powder Bed Fusion. Materials, 17(14), 3432. DOI: 10.3390/ma17143432
- Jin, Q.-Y., Kang, D., Ha, K., Yu, J.H., Lee, W. 2022. Simulation of annealing process on AISI 316 L stainless steel fabricated via laser powder bed fusion using finite element method with creep. Additive Manufacturing, 60, 103255. DOI: 10.1016/j.addma.2022.103255
- Kazemi Movahed, A., Ghanavati, R., Saboori, A., Iuliano, L. 2025. A Review of Strategies for In Situ Mitigating of Residual Stress in Laser-Based Metal Additive Manufacturing: Insights, Innovations, and Challenges. Acta Metallurgica Sinica (English Letters), 38(10), 1657-1698. DOI: 10.1007/s40195-025-01902-5
- Kulcsar, K., Zsoldos, I. 2024. Mechanical Studies of Subperiosteal Implants. Periodica Polytechnica Mechanical Engineering, 68(1), 53-62. DOI: 10.3311/PPme.23706
- Le Roux, S., Salem, M., Hor, A. 2018. Improvement of the bridge curvature method to assess residual stresses in selective laser melting. Additive Manufacturing, 22, 320-329. DOI: 10.1016/j.addma.2018.05.025
- Lendvai, L., Fekete, I., Rigotti, D., Pegoretti, A. 2025. Experimental study on the effect of filament-extrusion rate on the structural, mechanical and thermal properties of material extrusion 3D-printed polylactic acid (PLA) products. Progress in Additive Manufacturing, 10(1), 619-629. DOI: 10.1007/s40964-024-00646-5
- Levkulich, N.C., Semiatin, S.L., Gockel, J.E., Middendorf, J.R., DeWald, A.T., Klingbeil, N.W. 2019. The effect of process parameters on residual stress evolution and distortion in the laser powder bed fusion of Ti-6Al-4V. Additive Manufacturing, 28, 475-484. DOI: 10.1016/j.addma.2019.05.015
- Li, Z., Xu, R., Zhang, Z., Kucukkoc, I. 2018. The influence of scan length on fabricating thin-walled components in selective laser melting. International Journal of Machine Tools and Manufacture, 126, 1-12. DOI: 10.1016/j.ijmachtools.2017.11.012
- Mahtabi, M., Yadollahi, A., Stokes, R., Doude, H., Priddy, M. 2023. Effect of build interruption during laser powder bed fusion process on structural integrity of Ti-6Al-4V. Engineering Failure Analysis, 153, 107626. DOI: 10.1016/j.engfailanal.2023.107626
- Martucci, A., Marchese, G., Bassini, E., Lombardi, M. 2023. Effects of Stress-Relieving Temperature on Residual Stresses, Microstructure and Mechanical Behaviour of Inconel 625 Processed by PBF-LB/M. Metals, 13(4), 796. DOI: 10.3390/met13040796
- Meier, B., Godja, N., Warchomicka, F., Belei, C., Schäfer, S., Schindel, A., Palcynski, G., et al. 2022. Influences of Surface, Heat Treatment, and Print Orientation on the Anisotropy of the Mechanical Properties and the Impact Strength of Ti 6Al 4V Processed by Laser Powder Bed Fusion. Journal of Manufacturing and Materials Processing, 6(4), 87. DOI: 10.3390/jmmp6040087
- Mohammadtaheri, H., Sedaghati, R., Molavi-Zarandi, M. 2022. Inherent strain approach to estimate residual stress and deformation in the laser powder bed fusion process for metal additive manufacturing—a state-of-the-art review. The International Journal of Advanced Manufacturing Technology, 122(5-6), 2187-2202. DOI: 10.1007/s00170-022-10052-2
- Mugwagwa, L., Dimitrov, D., Matope, S., Yadroitsev, I. 2018. Influence of process parameters on residual stress related distortions in selective laser melting. Procedia Manufacturing, 21, 92-99. DOI: 10.1016/j.promfg.2018.02.099
- Mugwagwa, L., Yadroitsev, I., Matope, S. 2019. Effect of Process Parameters on Residual Stresses, Distortions, and Porosity in Selective Laser Melting of Maraging Steel 300. Metals, 9(10), 1042. DOI: 10.3390/met9101042
- Noll, I., Koppka, L., Bartel, T., Menzel, A. 2022. A micromechanically motivated multiscale approach for residual distortion in laser powder bed fusion processes. Additive Manufacturing, 60, 103277. DOI: 10.1016/j.addma.2022.103277
- Orosz, T., Horváth, T., Tóth, B., Kuczmann, M., Kocsis, B. 2023. Iron Loss Calculation Methods for Numerical Analysis of 3D-Printed Rotating Machines: A Review. Energies, 16(18), 6547. DOI: 10.3390/en16186547
- Paraschiv, A., Matache, G., Vladut, M. 2024. Assessment of Residual Stresses in Laser Powder Bed Fusion Manufactured IN 625. Materials, 17(2), 413. DOI: 10.3390/ma17020413
- Pauzon, C., Mishurova, T., Evsevleev, S., Dubiez-Le Goff, S., Murugesan, S., Bruno, G., Hryha, E. 2021. Residual stresses and porosity in Ti-6Al-4V produced by laser powder bed fusion as a function of process atmosphere and component design. Additive Manufacturing, 47, 102340. DOI: 10.1016/j.addma.2021.102340
- Roberts, A. 2001. Curvature attributes and their application to 3D interpreted horizons. First Break, 19(2), 85-100. DOI: 10.1046/j.0263-5046.2001.00142.x
- Robinson, J., Ashton, I., Fox, P., Jones, E., Sutcliffe, C. 2018. Determination of the effect of scan strategy on residual stress in laser powder bed fusion additive manufacturing. Additive Manufacturing, 23, 13-24. DOI: 10.1016/j.addma.2018.07.001
- Salem, M., Le Roux, S., Hor, A., Dour, G. 2020. A new insight on the analysis of residual stresses related distortions in selective laser melting of Ti-6Al-4V using the improved bridge curvature method. Additive Manufacturing, 36, 101586. DOI: 10.1016/j.addma.2020.101586
- Szachogłuchowicz, I., Fikus, B., Grzelak, K., Kluczyński, J., Torzewski, J., Łuszczek, J. 2021. Selective Laser Melted M300 Maraging Steel—Material Behaviour during Ballistic Testing. Materials, 14(10), 2681. DOI: 10.3390/ma14102681
- Xie, D., Lv, F., Yang, Y., Shen, L., Tian, Z., Shuai, C., Chen, B., et al. 2022. A Review on Distortion and Residual Stress in Additive Manufacturing. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 1(3), 100039. DOI: 10.1016/j.cjmeam.2022.100039
- Yu, J.H., Jin, Q.-Y., Ha, K., Lee, W. 2023. Influence of Several Heat Treatments on Residual Stress in Laser Powder Bed-Fused Maraging 18Ni-300 Steel. Applied Sciences, 13(11), 6572. DOI: 10.3390/app13116572
- Zaeh, M.F., Branner, G. 2010. Investigations on residual stresses and deformations in selective laser melting. Production Engineering, 4(1), 35-45. DOI: 10.1007/s11740-009-0192-y
- Zhang, Y., Lin, W., Zhai, Z., Wu, Y., Yang, R., Zhang, Z. 2023. Enhancing the mechanical property of laser powder bed fusion CoCrMo alloy by tailoring the microstructure and phase constituent. Materials Science and Engineering: A, 862, 144449. DOI: 10.1016/j.msea.2022.144449
- Zink, B., Kovács, N.K., Kovács, J.G. 2019. Thermal analysis based method development for novel rapid tooling applications. International Communications in Heat and Mass Transfer, 108, 104297. DOI: 10.1016/j.icheatmasstransfer.2019.104297
- Zou, S., Pang, L., Xu, C., Xiao, X. 2022. Effect of Process Parameters on Distortions Based on the Quantitative Model in the SLM Process. Applied Sciences, 12(3), 1567. DOI: 10.3390/app12031567