Have a personal or library account? Click to login
Thermo-physical characteristics of acrylic-based building external isolation panels produced from different geological materials Cover

Thermo-physical characteristics of acrylic-based building external isolation panels produced from different geological materials

Open Access
|Mar 2019

References

  1. Al-Homoud, D.M.S., 2005. Performance characteristics and practical applications of common building thermal insulation materials. Building andEnvironment40(3),353-366.10.1016/j.buildenv.2004.05.013
  2. ASTM C 518, Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. Annual Book of ASTM Standards.
  3. Cabeza, L. F., Castell, A., Medrano, M., Martorell, I., Pérez, G., Fernández, I., 2010. Experimental study on the performance of insulation materials in mediterranean construction. Energy and Buildings, 42(5), 630-636.10.1016/j.enbuild.2009.10.033
  4. Celik, S., Family, R., Menguc, M.P., 2016. Analysis of perlite and pumice based building insulation materials. Journal of Building Engineering, 6, 105-111.10.1016/j.jobe.2016.02.015
  5. Demirboğa, R., Gül, R., 2003. The effects of expanded perlite aggregate, silica füme and fly ash on the thermal conductivity of lightweight concrete. Cement and Concrete Research, 33(5), 723-727.10.1016/S0008-8846(02)01032-3
  6. Demirboga, R., 2003. Influence of mineral admixtures on thermal conductivity and compressive strength of mortar. Energy and buildings, 35(2), 189-192.10.1016/S0378-7788(02)00052-X
  7. Dombayci, A., 2007. The environmental impact of optimum insulation thickness for external walls of buildings. Building and Environment 42(11), 3855-3859.10.1016/j.buildenv.2006.10.054
  8. Ekici, B. B., Gulten, A.A., Aksoy, U.T., 2012. A study on the optimum insulation thicknesses of various types of external walls with respect to different materials, fuels and climate zones in Turkey. Applied Energy, 92, 211-217.10.1016/j.apenergy.2011.10.008
  9. Gül, R., Uysal, H., Demirboğa, R., 1997. Investigation of the thermal conductivity of lightweight concrete made with Kocapınar’s pumice aggregate, In Advanced in Civil Eng., III. Technical Congress, 2, 553-562.
  10. Hanu, L., Simon, G., Cheng, Y.B., 2006. Thermal stability and flammability of silicone polymer composites. Polymer Degradation and Stability, 91(6), 1373-1379.10.1016/j.polymdegradstab.2005.07.021
  11. ISO 8301, Thermal Insulation, Determination of Steady-state Thermal Resistance and Related Properties. Heat Flow Meter Apparatus, ISO, Geneva, Switzerland.
  12. Jelle, B.P., 2011. Traditional, state-of-the-art and future thermal building insulation materials and solutions-properties, requirements and possibilities. Energy and Buildings, 43(10), 2549-2563.10.1016/j.enbuild.2011.05.015
  13. Karataş, M.Z., Rızaoğlu, T, 2017. Technical characteristics of building isolation plates produced from natural materials such as:perlite,pumice, micaschist and arenitized granite. Romanian Journal of Materials, 47(2), 244-251.
  14. Kaynaklı, O., 2012. A review of the economical and optimum thermal insulation thickness for building applications. Renewable and Sustainable Energy Reviews, 16(1), 415-425.10.1016/j.rser.2011.08.006
  15. Korjenic, A., Petránek, V., Zach, J., Hroudová, J., 2011. Development and performance evaluation of natural thermal-insulation materials composed of renewable resources. Energy and Buildings, 43(9), 2518-2523.10.1016/j.enbuild.2011.06.012
  16. Onésippe, C., Passe-Coutrin, N., Toro, F., Delvasto, S., Bilba, K., Arsène, M.A., 2010. Sugar cane bagasse fibres reinforced cement composites: thermal considerations: Composites Part A. Applied Science and Manufacturing, 41(4), 549-556.10.1016/j.compositesa.2010.01.002
  17. Özel, M., 2011. Thermal performance and optimum insulation thickness of building walls with different structure materials. Applied Thermal Engineering, 31(17-18), 3854-3863.10.1016/j.applthermaleng.2011.07.033
  18. Papadopoulos, A.M., 2005. State of the art in thermal insulation materials and aims for future developments. Energy and Buildings, 37(1) 77-86.10.1016/j.enbuild.2004.05.006
  19. Reis, J., 2006. Fracture and flexural characterization of natural fiber-reinforced polymer concrete. Construction and Building Materials, 20(9), 673-678.10.1016/j.conbuildmat.2005.02.008
  20. Rızaoğlu, T., Parlak, O., İşler, F., 2005. Esence granitoyidinin (Göksun-Kahramanmaras) jeokimyası, GD Türkiye. Yerbilimleri Dergisi, 26(1), 1-13.
  21. Tasdemir, C., 2003. Istanbul’daki yapılarda korozyon sorunları. Yapı Yalıtım Teknolojileri Dergisi, 44, 40-42.
  22. TS825-Binalarda Isı Yalıtım Kuralları, Institute of Turkish Standards, Ankara, Turkey, 1998.
  23. Uysal, H., Demirboğa, R., Şahin, R., Gül, R., 2004. The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete. Cement and concrete research, 34(5), 845-848.10.1016/j.cemconres.2003.09.018
  24. Zhou, X. Y., Zheng, F., Li, H. G., Lu, C. L., 2010. An environment-friendly thermal insulation material from cotton stalk fibers. Energy and Buildings, 42 (7), 1070-1074.10.1016/j.enbuild.2010.01.020
DOI: https://doi.org/10.30657/pea.2018.21.03 | Journal eISSN: 2353-7779 | Journal ISSN: 2353-5156
Language: English
Page range: 12 - 19
Submitted on: Oct 30, 2018
Accepted on: Dec 10, 2018
Published on: Mar 7, 2019
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 M. Ziya Karataş, Tamer Rizaoğlu, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.