Have a personal or library account? Click to login
Assessment of the Suitability of Spectral Indices for Detecting Areas of Increased Stress among Plants – A Case Study of the Botanical Garden in Kielce Cover

Assessment of the Suitability of Spectral Indices for Detecting Areas of Increased Stress among Plants – A Case Study of the Botanical Garden in Kielce

Open Access
|Feb 2024

References

  1. Neupane K., Baysal-Gurel F.: Automatic identification and monitoring of plant diseases using unmanned aerial vehicles: A review, Remote Sens (Basel), vol. 13, no. 19, 2021, doi: 10.3390/rs13193841.
  2. Stupen R., Ryzhok Z., Stupen N., Stupen O.: The modeling of the yielding capacity of winter cereals due to satellite monitoring data of agricultural lands in Ukraine, Geodesy and Cartography, vol. 47, no. 1, pp. 1-9, 2021, doi: 10.3846/gac.2021.11740.
  3. Radoglou-Grammatikis P., Sarigiannidis P., Lagkas T., Moscholios I.: A compilation of UAV applications for precision agriculture, Computer Networks, vol. 172, 2020, doi: 10.1016/j.comnet.2020.107148.
  4. Marzec P.: Wykorzystanie wskaźników spektralnych do monitoringu stresu roślin na terenie ogrodu botanicznego w Kielcach, Master Thesis, Kielce University of Technology, 2022.
  5. Vanegas F., Bratanov D., Powell K., Weiss J., Gonzalez F.: A novel methodology for improving plant pest surveillance in vineyards and crops using UAV-based hyperspectral and spatial data, Sensors (Switzerland), vol. 18, no. 1, pp. 1-21, 2018, doi: 10.3390/s18010260.
  6. Hunt E.R., Dean Hively W., Fujikawa S.J., Linden D.S., Daughtry C.S.T., McCarty G.W.: Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring, Remote Sens (Basel), vol. 2, no. 1, pp. 290-305, 2010, doi: 10.3390/rs2010290.
  7. Mularz S., Drzewiecki W., Pirowski T.: Teledetekcyjne metody rejestracji krajobrazu, Roczniki Geomatyki, vol. V, no. 8, pp. 67-80, 2007.
  8. Warchoł A.: Analiza dokładności przestrzennej danych z lotniczego, naziemnego i mobilnego skaningu laserowego jako wstęp do ich integracji, Archiwum Fotogrametrii, Kartografii i Teledetekcji, vol. 25, pp. 255-260, 2013.
  9. Smith P.: The challenge for botanic garden science, Plants People Planet, vol. 1, no. 1, pp. 38-43, 2019, doi: 10.1002/ppp3.10.
  10. Drzewiecki W.: Land-Use / Land Cover Monitoring Based on Multitemporal Remote Sensing Images, Roczniki Geomatyki, vol. VI, no. 3, pp. 132-142, 2008.
  11. Velusamy P., Rajendran S., Mahendran R.K., Naseer S., Shafiq M., Choi J.-G.: Unmanned Aerial Vehicles (UAV) in Precision Agriculture: Applications and Challenges, Energies (Basel), vol. 15, no. 217, pp. 1-19, 2022, doi: https://doi.org/10.3390/en15010217.
  12. Balawejder M., Matkowska K., Colak H.E.: The Impact of Surveying Works on the Development of Smart City, Geographic Information Systems Conference and Exhibition “GIS ODYSSEY 2018”, no. 2623-5714, pp. 20-32, 2018.
  13. Hejmanowska B., Twardowski M., Żądło A.: An application of the “traffic lights” idea to crop control in integrated administration control system, Geomatics and Environmental Engineering, vol. 15, no. 4, pp. 129-152, 2021, doi: 10.7494/geom.2021.15.4.129.
  14. Sagan V. et al.: UAV/Satellite multiscale data fusion for crop monitoring and early stress detection, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 42, no. 2/W13, pp. 715-722, 2019, doi: 10.5194/isprs-archives-XLII-2-W13-715-2019.
  15. Curnel Y., Oger R.: Agrophenology Indicators From Remote Sensing: State of the Art, Isprs.Org, pp. 31-38, 2007, [Online]. Available: http://www.isprs.org/proceedings/XXXVI/8-W48/31_XXXVI-8-W48.pdf.
  16. Luo D. et al.: Using UAV image data to monitor the effects of different nitrogen application rates on tea quality, J Sci Food Agric, vol. 102, no. 4, pp. 1540-1549, 2022, doi: 10.1002/jsfa.11489.
  17. Scher C.L. et al.: Application of remote sensing technology to estimate productivity and assess phylogenetic heritability, Appl Plant Sci, vol. 8, no. 11, pp. 1-14, 2020, doi: 10.1002/aps3.11401.
  18. Rafa N., Nuzhat S., Uddin S.M.N., Gupta M., Rakshit R.: Ecotourism as a forest conservation tool: An ndvi analysis of the sitakunda botanical garden and ecopark in chattogram, bangladesh, Sustainability, vol. 13, no. 21, 2021, doi: 10.3390/su132112190.
  19. Minh Chinh L.: Using Satellite Images To Retrieve the River Turbidity and Water Flow Velocity for Monitoring Their Influences on Bridge Substructures, Structure and Environment, vol. 15, no. 2, pp. 63-72, 2023, doi: 10.30540/sae-2023-006.
  20. Backoulou F.G., Elliott N., Giles K., Alves T., Brewer M., Starek M.: Using multispectral imagery to map spatially variable sugarcane aphid infestations in sorghum, Southwest. Entomol, vol. 43, pp. 37-44, 2018, doi: https://doi.org/10.3958/059.043.0122.
  21. Feng L., Chen S., Zhang C., Zhang Y., He Y.: A comprehensive review on recent applications of unmanned aerial vehicle remote sensing with various sensors for high-throughput plant phenotyping, Comput Electron Agric, vol. 182, 2021, doi: 10.1016/j.compag.2021.106033.
  22. Liang H., Li W., Lai S., Zhu L., Jiang W., Zhang Q.: The integration of terrestrial laser scanning and terrestrial and unmanned aerial vehicle digital photogrammetry for the documentation of Chinese classical gardens – A case study of Huanxiu Shanzhuang, Suzhou, China, J Cult Herit, vol. 33, pp. 222-230, 2018, doi: 10.1016/j.culher.2018.03.004.
  23. Hajdukiewicz M., Romanyshyn I.: An accuracy assessment of spot heights on Digital Elevation Model (DEM) derived from ALS survey: case study of Łysica massif, Structure and Environment, vol. 9, no. 2, pp. 125-132, 2016.
  24. Zhang Y., Song C., Sun G., Band L.E., Noormets A., Zhang Q.: Understanding moisture stress on light use efficiency across terrestrial ecosystems based on global flux and remote-sensing data, J Geophys Res Biogeosci, vol. 120, no. 10, pp. 2053-2066, 2015, doi: 10.1002/2015JG003023.
  25. Geonatura Kielce – Botanical Garden website. Accessed: Nov. 20, 2022. [Online]. Available: https://geonaturakielce.pl/ogrodbotaniczny/informacje-ogolne/.
  26. Sobura S.: Calibration of the Low-Cost Uav Camera on a Spatial Test Field, Geodesy and Cartography, vol. 48, no. 3, pp. 134-143, 2022, doi: 10.3846/gac.2022.16215.
  27. Micasense producer website. Accessed: Nov. 20, 2022. [Online]. Available: https://support.micasense.com/hc/en-us.
  28. Sobura S., Hejmanowska B., Widłak M., Muszyńska J.: The Application of Remote Sensing Techniques and Spectral Analyzes to Assess the Content of Heavy Metals in Soil – A Case Study of Barania Góra Reserve, Poland, Geomatics and Environmental Engineering, vol. 16, no. 4, pp. 187-213, 2022, doi: 10.7494/geom.2022.16.4.187.
  29. Pyka K.: Wavelet-based local contrast enhancement for satellite, aerial and close range images, Remote Sens (Basel), vol. 9, no. 1, 2017, doi: 10.3390/rs9010025.
DOI: https://doi.org/10.30540/sae-2023-022 | Journal eISSN: 2657-6902 | Journal ISSN: 2081-1500
Language: English
Page range: 253 - 268
Published on: Feb 2, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Szymon Sylwester Sobura, published by Kielce University of Technology
This work is licensed under the Creative Commons Attribution 3.0 License.