References
- Thomas W.M., Murch M.G., Nicholas E.D., Temple-Smith P., Needham J.Ch., Dawes Ch.J.: Improvements relating to friction welding. European patent application, EP0653265A2, European Patent Office, 27.11.1992.
- Thomas W.M., Nicholas E.D.: Friction stir welding for the transportation industries, Materials&Design, vol. 18, pp. 269-73, 1997, doi:10.1016/S0261-3069(97)00062-9.
- Neto D.M., Neto P.: Numerical modeling of friction stir welding process: a literature review. The International Journal of Advanced Manufacturing Technology, vol. 65, pp. 115-126, 2013, doi:10.1007/s00170-012-4154-8.
- Abaqus/CAE 2017. Simulia User Assistance. Johnston, RI, USA: Dassault Systemes Simulia Corp., 2017.
- Mishra R.S., Ma Z.Y.: Friction stir welding and processing, Material Science and Engineering, vol. 50, pp. 1-78, 2005, doi:10.1016/j.mser.2005.07.001.
- Sun Y., Gong W., Feng J., Lu G., Zhu R., Li Y.: A Review of the Friction Stir Welding of Dissimilar Materials between Aluminum Alloys and Copper. Metals, vol. 12, pp. 675, 2022, doi:10.3390/met12040675.
- Nandan R., DebRoy T., Bhadeshia H.K.D.H.: Recent advances in friction-stir welding – Process, weldment structure and properties, Progress in Material Science, vol. 53, pp. 980-1023, 2008, doi:10.1016/j.pmatsci.2008.05.001.
- Fabregas Villegas J., Martinez Guarin A., Unfried-Silgado J.: A Coupled Rigid-viscoplastic Numerical Modeling for Evaluating Effects of Shoulder Geometry on Friction Stir-welded Aluminum Alloys, International Journal of Engineering, vol. 32, pp. 313-321, 2019.
- Gao S., Zhou L., Sun G., Zhao H., Chu X., Li G., Zhao H.: Influence of Welding Speed on Microstructure and Mechanical Properties of 5251 Aluminum Alloy Joints Fabricated by Self-Reacting Friction Stir Welding, Materials, vol. 14, pp. 6178, 2021, doi:10.3390/ma14206178.
- Dialami N., Cervera M., Chiumenti M.: Numerical Modelling of Microstructure Evolution in Friction Stir Welding (FSW), Metals, vol. 8, pp. 183, 2018, doi:10.3390/met8030183.
- Dialami N., Chiumenti M., Cervera M.: Material flow visualization in Friction Stir Welding via particle tracing, International Journal of Material Forming, vol. 8, pp. 167-181, 2015, doi:10.1007/s12289-013-1157-4.
- Chao Y.J., Qi X., Tang W.: Heat Transfer in Friction Stir Welding – Experimental and Numerical Studies, Journal of Manufacturing Science and Engineering, vol. 125, pp. 138-145, 2003, doi:10.1115/1.1537741.
- Xie G.M., Ma Z.Y., Geng L.: Partial recrystallization in the nugget zone of friction stir welded dual-phase Cu–Zn alloy, Philosophical Magazine, vol. 89, pp. 1505-1516, 2009, doi:10.1080/14786430903019040.
- Fonda R.W., Bingert J.F.: Microstructural Evolution in the Heat-Affected Zone of a Friction Stir Weld, Metallurgical and Materials Transactions A, vol. 35, pp. 1487-1499, 2004, doi:10.1007/s11661-004-0257-7.
- Richmire S., Hall K., Haghsnehas M.: Design of experiment study on hardness variations in friction stir welding of AM60 Mg alloy, Journal of Magnesium and Alloys, vol. 6, pp. 215-228, 2018, doi:10.1016/j.jma.2018.07.002.
- Liu X., Xie P., Wimpory R., Li W., Lai R., Li M., Chen D., Liu Y., Zhao H.: Residual Stress, Microstructure and Mechanical Properties in Thick 6005A-T6 Aluminium Alloy Friction Stir Welds, Metals, vol. 9, pp. 803, 2019, doi:10.3390/met9070803.
- Shyamlal Ch., Shanmugavel R., Winowlin Jappes J.T., Nair A., Ravichandran M., Abuthakeer S.S., Prakash Ch., Dixit S., Vatin N.I.: Corrosion Behavior of Friction Stir Welded AA8090-T87 Aluminum Alloy, Materials, vol. 15, pp. 5165, 2022, doi:10.3390/ma15155165.
- Schenider J., Beshears R., Nunes Jr. A.C.: Interfacial sticking and slipping in the friction stir welding process, Materials Science and Engineering A, vol. 435-436, pp. 297-304, 2006, doi:10.1016/j.msea.2006.07.082.
- Kossakowski P.G., Wciślik W., Bakalarz M.: Macrostructural Analysis Of Friction Stir Welding (FSW) Joints, Journal of Mechanical Engineering Research, vol. 1, pp. 28-33, 2018, doi:10.30564/jmer.v1i1.486.
- Kossakowski P.G., Wciślik W., Bakalarz M.: Effect of selected friction stir welding parameters on mechanical properties of joints, Archives of Civil Engineering, vol. 65, pp. 51-62, 2019, doi:10.2478/ace-2019-0046.
- Richards B.: Microstructure-Property Correlations in Friction Stir Welded Al6061-T6 Alloys. BSc thesis, Worcester Polytechnic Institute, Worcester, Massachusetts, USA, 2010.
- Meyghani B., Awang M.B., Emamian S.S., Nor M.K.B.M., Pedapati S.R.: A Comparison of Different Finite Element Methods in the Thermal Analysis of Friction Stir Welding (FSW). Metals, vol. 7(10), pp. 450, 2017, doi:10.3390/met7100450.
- Lorrain O., Serri J., Favier V., Zahrouni H., El Hadrouz M.: A contribution to a critical review of friction stir welding numerical simulation, Journal of Mechanics of Materials and Structures, vol. 4(2), pp. 351-369, 2009, doi:10.2140/jomms.2009.4.351.
- Oliphant A.H.: Numerical Modeling of Friction Stir Welding: A Comparison of Alegra and Forge3, MSc thesis, Brigham Young University, Provo, Utah, USA, 2004.
- Guerdoux S.: Numerical simulation of the friction stir welding process, PhD thesis, l’Ecole des Mines de Paris, Paris, France, 2007.
- Arakere A.P.: Computational modeling of the friction stir welding (FSW) process and of the performance of FSW joints, MSc thesis, Clemson University, Clemson, South Carolina, USA, 2013.
- Bhattacharjee R., Biswas P.: Review on thermo-mechanical and material flow analysis of dissimilar friction stir welding, Welding International, vol. 35, pp. 295-332, 2021, doi:10.1080/09507116.2021.1992256.
- Sen S., Murugesan J.: Experimental and numerical analysis of friction stir welding: a review. Eng Res Express 2022, 4, 032004. https://doi.org/10.1088/2631-8695/ac7f1e.
- Meyghani B., Awang M.B., Momeni M., Rynkovskaya M.: Development of a Finite Element Model for Thermal Analysis of Friction Stir Welding (FSW), IOP Conference Series: Materials Science and Engineering, vol. 495, pp. 012101, 2019, doi:10.1088/1757-899X/495/1/012101.
- Colegrove P.A., Shercliff H.R.: Experimental and numerical analysis of aluminium alloy 7075-T7351 friction stir weld, Science and Technology of Welding and Joining, vol. 8:5, pp. 360-368, 2003, doi:10.1179/136217103225005534.
- Colegrove P.A., Shercliff H.R.: 3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile, Journal of Materials Processing Technology, vol. 169, pp. 320-327, 2005, doi:10.1016/j.jmatprotec.2005.03.015.
- Jacquin D., de Meester B., Simar A., Deloison D., Montheillet F., Desrayaud C.: A simple Eulerian thermomechanical modeling of friction stir welding, Journal of Materials Processing Technology, vol. 211, pp. 57-65, 2011, doi:10.1016/j. jmatprotec.2010.08.016.
- Dialami N., Chiumenti M., Cervera M., de Saracibar C.A.: Local and global approaches to Friction Stir Welding. Barcelona, Spain: International Center for Numerical Methods in Engineering, 2016.
- Dialami N., Chiumenti M., Cervera M., de Saracibar C.A.: Challenges in Thermo-mechanical Analysis of Friction Stir Welding Processes, Archives of Computational Methods in Engineering, vol. 24, pp. 189-225, 2017, doi:10.1007/s11831-015-9163-y.
- Gao E., Zhang X., Liu C., Ma Z.: Numerical simulations on material flow behaviors in whole process of friction stir welding, Transactions of Nonferrous Metals Society of China, vol. 28, pp. 2324-2334, 2018, doi:10.1016/S1003-6326(18)64877-0.
- Zhao H.: Friction stir welding (FSW) simulation using an arbitrary Lagrangian – Eulerian (ALE) moving mesh approach, PhD thesis, West Virginia University, Morgantown, West Virginia, USA, 2005.
- Chauhan P., Jain R., Pal S.K., Singh S.B.: Modeling of defects in friction stir welding using coupled Eulerian and Lagrangian method, Journal of Manufacturing Processes, vol. 34, pp. 158-166, 2018, doi:10.1016/j.jmapro.2018.05.022.
- Kishta E.E., Abed F.H., Darras B.M.: Nonlinear Finite Element Simulation of Friction Stir Processing of Marine Grade 5083 Aluminum Alloy, Engineering Transactions, vol. 62, pp. 313-328, 2014.
- Li K., Jarrar F., Sheikh-Ahmad J., Ozturk F.: Using coupled Eulerian Lagrangian formulation for accurate modeling of the friction stir welding process, Procedia Engineering, 207, 574-579, 2017, doi:10.1016/j.proeng.2017.10.1023.
- Chen C.M., Kovacevic R.: Finite element modeling of friction stir welding – thermal and thermomechanical analysis, International Journal of Machine Tools and Manufacture, vol. 43, pp. 1319-1326, 2003, doi: 10.1016/S0890-6955(03)00158-5.
- Schmidt H., Hattel J.: A local model for the thermomechanical conditions in friction stir welding, Modelling and Simulation in Materials Science and Engineering, vol. 13, pp. 77-93, 2004, doi:10.1088/0965-0393/13/1/006.
- Schmidt H., Hattel J.: Thermal modelling of friction stir welding, Scriptia Materialia, vol. 58, pp. 332-337, 2008, doi:10.1016/j.scriptamat.2007.10.008.
- Hamilton C., Dymek S., Sommers A.: A thermal model of friction stir welding in aluminum alloys, International Journal of Machine Tools and Manufacture, vol. 48, pp. 1120-1130, 2008, doi:10.1016/j.ijmachtools.2008.02.001.
- Mehta M., Reddy G.M., Rao A.V., De A.: Numerical modeling of friction stir welding using the tools with polygonal pins, Defence Technology, vol. 11, pp. 229-236, 2015, doi:10.1016/j.dt.2015.05.001.
- Chiumenti M., Cervera M., de Saracibar C.A., Dialami N.: Numerical modeling of friction stir welding processes, Computer Methods in Applied Mechanics and Engineering, vol. 254, pp. 353-369, 2013, doi:10.1016/j.cma.2012.09.013.
- Santiago D.H., Lombera G., Urquiza S., Cassanelli A., de Vedia L.A.: Numerical Modeling of Welded Joints by the “Fric-tion Stir Welding” Process, Materials Research, vol. 7, pp. 569-574, 2004, doi:10.1590/S1516-14392004000400010.
- Ulysse P.: Three-dimensional modeling of the friction stir-welding process, International Journal of Machine Tools and Manufacture, vol. 42, pp. 1549-1557, 2002, doi:10.1016/S0890-6955(02)00114-1.
- Zhang Z.: Comparison of two contact models in the simulation of friction stir welding process, Journal of Material Science, vol. 43, pp. 5867-5877, 2008, doi:10.1007/s10853-008-2865-x.
- Schmidt H., Hattel J., Wert J.: An analytical model for the heat generation in friction stir welding, Modelling and Simulation in Material Science and Engineering, vol. 12, pp. 143-157, 2003, doi:10.1088/0965-0393/12/1/013.
- Zhu X.K., Chao Y.J.: Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel, Journal of Materials Processing Technology, vol. 146, pp. 263-272, 2004, doi:10.1016/j. jmatprotec.2003.10.025.
- Abdullah I., Mohammed S.S., Abdallah S.A.: Artificial neural network modelling of the surface roughness of friction stir welded AA7020-T6 aluminum alloy, Engineering Research Journal, vol. 1, pp. 1-5, 2020, doi:10.21608/erjsh.2020.228168.
- Okuyucu H., Kurt A., Arcaklioglu E.: Artificial neural network application to the friction stir welding of aluminum plates, Materials&Design, vol. 28, pp. 78-84, 2007, doi:10.1016/j.matdes.2005.06.003.
- Jemioło S., Gajewski M.: Symulacja MES obróbki cieplnej wyrobów stalowych z uwzględnieniem zjawisk termometalurgicznych. Część 1. Nieustalony przepływ ciepła z uwzględnieniem przejść fazowych (Thermo-metallurgical phenomena in FE simulation of heat treatment for steel. Part 1: Unsteady heat transfer and phase change phenomena). Zeszyty Naukowe, Budownictwo, vol. 143, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2005.
- Jemioło S., Gajewski M.: Symulacja MES obróbki cieplnej wyrobów stalowych z uwzględnieniem zjawisk termometalurgicznych. Część 2. Przykłady numeryczne z zastosowaniem programu SYSWELD (Thermo-metallurgical phenomena in FE simulation of heat treatment for steel. Part 2: Numerical examples using SYSWELD program). Zeszyty Naukowe, Budownictwo, vol. 143, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2005.
- Jemioło S., Gajewski M.: Zastosowanie programu SYSWELD w modelowaniu resztkowych naprężeń pospawalniczych (SYSWELD program application in modelling of residual postwelding stresses). Zeszyty Naukowe, Budownictwo, z.143, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2005.
- Hashemzadeh M., Garbatov Y., Guedes Soares C., O’Connor A.: Friction stir welding induced residual stresses in thick steel plates from experimental and numerical analysis, Ships and Offshore Structures, vol. 17, pp. 1053-1061, 2021, doi:10.1080/17445302.2021.1893531.
- Chang P.H., Teng T.L.: Numerical and experimental investigations on the residual stresses of the butt-welded joints, Computational Materials Science, vol. 29, pp. 511-522, 2004, doi:10.1016/j.commatsci.2003.12.005.
- Jeyakumar M., Christopher T., Influence of residual stresses on failure pressure of cylindrical pressure vessels, Chinese Journal of Aeronautics, vol. 26, pp. 1415-1421, 2013, doi:10.1016/j.cja.2013.07.025.
- Giorjão R.A.R., Avila J.A., Escobar J.D., Ferrinho Pereira V., Marinho R.R., Torres Piza Paes M., Fonseca E.B., Costa A.M.S., Terada M.: The study of volumetric wearing of PCBN/W-Re composite tool during friction stir processing of pipeline steels (X70) plates, The International Journal of Advanced Manufacturing Technology, vol. 114, pp. 1555-1564, 2021, doi:10.1007/s00170-021-06932-8.
- Kossakowski P., Wciślik W., Bakalarz M.: Selected aspects of application of aluminium alloys in building structures, Structure and Environment, vol. 9(4), pp. 256-263, 2017, https://sae.tu.kielce.pl/33/S&E_nr_33_Art_4.pdf.
- Wciślik W., Kossakowski P., Sokołowski P.: Stainless steel in building structures - advantages and examples of application, Structure and Environment, vol. 9(3), pp. 191-198, 2017, https://sae.tu.kielce.pl/32/S&E_NR_32_Art_4.pdf.