Have a personal or library account? Click to login
Application of Deep Learning Techniques in Identification of the Structure of Selected Road Materials Cover

Application of Deep Learning Techniques in Identification of the Structure of Selected Road Materials

Open Access
|Nov 2023

References

  1. Katalog typowych konstrukcji nawierzchni podatnych i półsztywnych. 2014.
  2. Mazurek G., Buczyński P., Mackiewicz P., Iwański M.: Field investigation of a deep recycled base course layer containing dedicated three component hydraulic and bituminous binder, Construction and Building Materials, t. 390, s. 131685, sie. 2023, doi: 10.1016/j.conbuildmat.2023.131685.
  3. Wirtgen Group, Cold Recycling Technology, First edition. Windhagen: Wirtgen GmbH, 2012.
  4. Mazurek G., Durlej M., Iwański M., Numerical modelling of interlayer adhesion in the layer of recycled material with the use of the leutner apparatus and computed tomography scanning”, SAE, t. 13, nr 4, grudz. 2021, doi: 10.30540/sae-2021-011.
  5. Rebelo F.J.P., Martins F.F., Silva H.M.R.D., Oliveira J.R.M., Use of data mining techniques to explain the primary factors influencing water sensitivity of asphalt mixtures, Construction and Building Materials, t. 342, s. 128039, sie. 2022, doi: 10.1016/j.conbuildmat.2022.128039.
  6. Gong H., Sun Y., Mei Z., Huang B.: Improving accuracy of rutting prediction for mechanistic-empirical pavement design guide with deep neural networks, Construction and Building Materials, t. 190, s. 710–718, lis. 2018, doi: 10.1016/j.conbuildmat.2018.09.087.
  7. Guo X., Hao P.: Using a Random Forest Model to Predict the Location of Potential Damage on Asphalt Pavement, Applied Sciences, t. 11, nr 21, p. 10396, lis. 2021, doi: 10.3390/app112110396.
  8. Fakhri M., Dezfoulian R.S.: Pavement structural evaluation based on roughness and surface distress survey using neural network model, Construction and Building Materials, t. 204, s. 768–780, kwi. 2019, doi: 10.1016/j.conbuildmat.2019.01.142.
  9. Gopalakrishnan K., Agrawal A., Ceylan H., Kim S., Choudhary A.: Knowledge discovery and data mining in pavement inverse analysis, Transport, t. 28, nr 1, s. 1–10, mar. 2013, doi: 10.3846/16484142.2013.777941.
  10. Bashar M.Z., Torres-Machi C.: Performance of Machine Learning Algorithms in Predicting the Pavement International Roughness Index, Transportation Research Record, t. 2675, nr 5, s. 226–237, maj 2021, doi: 10.1177/0361198120986171.
  11. Tong Z., Gao J., Sha A., Hu L., Li S.: Convolutional Neural Network for Asphalt Pavement Surface Texture Analysis: Convolutional neural network, Computer-Aided Civil and Infrastructure Engineering, t. 33, nr 12, s. 1056–1072, grudz. 2018, doi: 10.1111/mice.12406.
  12. Tran K.A., Kondrashova O., Bradley A., Williams E.D., Pearson J.V., Waddell N.: Deep learning in cancer diagnosis, prognosis and treatment selection, Genome Med, t. 13, nr 1, s. 152, grudz. 2021, doi: 10.1186/s13073-021-00968-x.
  13. Arya D. et al.: Deep learning-based road damage detection and classification for multiple countries, Automation in Construction, t. 132, s. 103935, grudz. 2021, doi: 10.1016/j.autcon.2021.103935.
  14. Jóźwiak Z., Pożarycki A., Górnaś P.: Diagnostyka nawierzchni drogowej przy zastosowaniu metod sieci neuronowych – studium przypadku, Drogownictwo, t. 2, nr 3, s. 65–72, 2022.
  15. Freund Y., Schapire R.E.: A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting, Journal of Computer and System Sciences, t. 55, nr 1, pp. 119–139, sie. 1997, doi: 10.1006/jcss.1997.1504.
  16. Nazemi M., Heidaripanah A.: Support vector machine to predict the indirect tensile strength of foamed bitumen-stabilised base course materials, Road Materials and Pavement Design, t. 17, nr 3, pp. 768–778, lip. 2016, doi: 10.1080/14680629.2015.1119712.
  17. Chollet F., Allaire J.J., Matuk K.: Deep learning: praca z językiem R i biblioteką Keras. Gliwice: Helion, 2019.
  18. Simonyan K., Zisserman A.: Very Deep Convolutional Networks for Large-Scale Image Recognition, 2014, doi: 10.48550/ARXIV.1409.1556.
  19. Zelelew H.M., Almuntashri A., Agaian S., Papagiannakis A.T.: An improved image processing technique for asphalt concrete X-ray CT images, Road Materials and Pavement Design, t. 14, nr 2, pp. 341–359, cze. 2013, doi: 10.1080/14680629.2013.794370.
  20. Report TECHMATSTRATEG I, The innovative technology used the binding agent optimization that provides the long service life of the recycled base course, National Centre for Research and Development (NCBR), TECHMATSTRATEG1/349326/9/NCBR/2017, 2018.
  21. Selvaraju R.R., Cogswell M., Das A., Vedantam R., Parikh D., Batra D.: Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, 2016, doi: 10.48550/ARXIV.1610.02391.
DOI: https://doi.org/10.30540/sae-2023-014 | Journal eISSN: 2657-6902 | Journal ISSN: 2081-1500
Language: English
Page range: 159 - 167
Published on: Nov 2, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Grzegorz Mazurek, Małgorzata Durlej, Juraj Šrámek, published by Kielce University of Technology
This work is licensed under the Creative Commons Attribution 3.0 License.