References
- Fanger P.O.: Thermal Comfort, Analysis and Applications in Environmental Engineering. Copenhagen: Danish Technical Press, 1974.
- ISO International Organisation for Standardization, Ergonomics of the thermal environment – Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, International Standard ISO 7730, 2005.
- Krawczyk N., Kapjor A.: A study of thermal comfort at Kielce University of Technology. “Structure and Environment”, 2020, 12(3), pp. 127-132.
- Dębska L.: Assessment of the indoor environment in the intelligent building. “Civil and Environmental Engineering”, 2020, 17(2), pp. 572-582.
- Dębska L., Krakowiak J., Kapjor A.: Modern methods of thermal comfort measurements. “Structure and Environment” 2020, 12(4), pp. 161-165.
- Molliet D.S., Mady C.E.K.: Exergy analysis of the human body to assess thermal comfort conditions: Comparison of the thermal responses of males and females. “Case Studies in Thermal Engineering”, 25, 2021.
- Jindal A.: Thermal comfort study in naturally ventilated school classrooms in composite climate of India. “Building and Environment”, 2018, 142, pp. 34-46.
- Krawczyk N., Dębska L.: Indoor environment, lighting conditions and productivity in the educational buildings. “Civil and Environmental Engineering”, 2022, 18(2), pp. 581-588.
- Kolková Z., Hrabovský P., Florková Z., Lenhard R.: Analysis of ensuring thermal comfort using an intelligent control system. “MATEC Web of Conferences” 2020, 328, 03017.
- Jazizadeh F., Marin F.M., Becerik-Gerber B.: A thermal preference scale for personalized comfort profile identification via participatory sensing. “Building and Environment” 2013, 68, pp. 1440-1449.
- Telejko M., Kotrys-Działak D., Majewski G.: Identification of building environment problems. “Journal of Physics: Conference Series” 2022, 2339, 012021.
- Kosiński P, Skotnicka-Siepsiak A.: Possibilities of adapting the university lecture room to the green university standard in terms of thermal comfort and ventilation accuracy. “Energies” 2022, 15 (10), 3735.
- Orman Ł.J., Wojtkowiak J.: Case study of thermal comfort, lighting conditions and productivity at two classrooms of Poznań University of Technology. “Structure and Environment” 2022, 14 (2), pp. 39-43.
- Sadko K., Piotrowski J.Zb.: Numerical investigations of the thermal properties of window systems: a review. “Structure and Environment” 2022, 14 (4), pp. 126-141.
- Polacikova M., Nemec P., Malcho M., Jandacka J.: Experimental investigations of a passive cooling system based on the gravity loop heat pipe principle for an electrical cabinet. “Applied Science” 2022, 12, 1634.
- Vilcekova S., Meciarova L., Burdova E.K., Katunska J., Kosicanova D., Doroudiani S.: Indoor environmental quality of classrooms and occupants’ comfort in a special education school in Slovak Republic. “Building and Environment”, 2017, 120, pp. 29-40.
- Žilina climate (Slovakia). [online]. 24.01.2023. Available online: https://en.climate-data.org/europe/slovakia/region-of-zilina/zilina-204/
- Dębska L.: Developing the modified model of thermal comfort. “Journal of Physics: Conference Series” 2022, 2346, 012003.