Have a personal or library account? Click to login
Potential Co-exposure to Arsenic and Fluoride and Biomonitoring Equivalents for Mexican Children Cover

Potential Co-exposure to Arsenic and Fluoride and Biomonitoring Equivalents for Mexican Children

Open Access
|Jul 2018

References

  1. 1Inventario Nacional de Calidad del Agua (INCA). Inventario Nacional de Calidad del Agua. https://www.calidaddelagua.org/ 2017. Accessed August 1, 2017.
  2. 2Sistema de Información Geográfica del Agua (SIGA). Capas de información de los aprovechamientos inscritos del Registro Público de Derechos de Agua (REPDA). http://siga.conagua.gob.mx/REPDA/Menu/FrameKMZ.htm 2015. Accessed August 1, 2017.
  3. 3Quantum GIS Development Team. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project. (Version “Las Palmas” 2.18.0) [computer software]. https://qgis.osgeo.org 2016. Accessed September 1, 2017.
  4. 4Instituto Nacional de Estadística y Geografía (INEGI). Principales resultados por localidad (ITER). https://qgis.org/en/site/ 2017. Accessed August 1, 2017.
  5. 5World Health Organization (WHO). Guidelines for Drinking-water Quality. 4th ed. Geneva: WHO; 2011.
  6. 6Secretaría de Salud (SSA). Modificación a la Norma Oficial Mexicana NOM-127-SSA11-994, Salud ambiental. Agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. Mexico: Diario Oficial de la Federación; 2000.
  7. 7United States Environmental Protection Agency (USEPA). National Primary Drinking Water Regulations. Washington, DC: Office of Ground Water and Drinking Water, U.S. Environmental Protection Agency. EPA816F02013. Washington, DC: USEPA; 2002.
  8. 8United States Environmental Protection Agency (USEPA). National Primary Drinking Water Regulations. Washington, DC: USEPA; 2017.
  9. 9United States Department of Health and Human Services (USDHHS). U.S. Public Health Service Recommendation for Fluoride Concentration in Drinking Water for the Prevention of Dental Caries. Public Health Reports. 2015; 130: 114.
  10. 10Secretaría de Salud (SSA). Norma Oficial Mexicana NOM-201-SSA12-015, Productos y servicios. Agua y hielo para consumo humano, envasados y a granel. Especificaciones sanitarias. Mexico: Diario Oficial de la Federación; 2015.
  11. 11United States Food and Drug Administration (USFDA). Guidance for Industry Arsenic in Apple Juice: Action Level. Maryland: FDA; 2013.
  12. 12Joint FAO and WHO Codex Alimentarius Commission. Codex Alimentarius Comission. Working document for information and use in discussions related to contaminants and toxins in the GSCTFF. Joint FAO and WHO Food Standards Programme. Codex Committee on Contaminants in Foods, Fifth Session. Rome, Italy: FAO and WHO; 2011: 1012.
  13. 13Joint FAO and WHO Codex Alimentarius Commission. Codex Alimentarius Comission: Report of the eighth session of the Codex Committee on Contaminants in Foods Joint FAO/WHO Food Standards Programme. Rome, Italy: FAO and WHO; 2014.
  14. 14Ministry of Health of the People’s Republic of China (MOH). National Standard of the People’s Republic of China: National Food Safety Standard. Maximum Levels of Contaminants in Food. GB 27622-012. Beijing: MOH; 2014.
  15. 15Comission Regulation (EC). Commission Regulation (EU) 2015/1006 of 25 June 2015 amending Regulation (EC) No 1881/2006 as regards maximum levels of inorganic arsenic in foodstuffs. Official Journal of the European Union. 2015. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:JOL_2015_161_R_0006.
  16. 16United States Food and Drug Administration (USFDA). Supporting Document for Action Level for Inorganic Arsenic in Rice Cereals for Infants. Maryland: FDA; 2016.
  17. 17Joint FAO/WHO Codex Alimentarius Commission. Codex Alimentarius: Standard for infant formula and formulas for special medical purposes intended for infants. 721–981. Rome, Italy: FAO/WHO; 2007: 121.
  18. 18United States Food and Drug Administration (USFDA). Anticaries Active Ingredients. Maryland: FDA; 1996.
  19. 19Secretaría de Salud (SSA). Modificación de los numerales 2, 3, 6, 8, 9 y 11 de la Norma Oficial Mexicana NOM-040-SSA11-993, Productos y servicios. Sal yodada y sal yodada fluorada. Especificaciones sanitarias. Mexico: Diario Oficial de la Federación; 2010.
  20. 20Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). Norma Oficial Mexicana NOM-147-SEMARNAT/SSA12-004, Que establece criterios para determinar las concentraciones de remediación de suelos contaminados por arsénico, bario, berilio, cadmio, cromo hexavalente, mercurio, níquel, plata, plomo, selenio, talio y/o vanadio. Vol 2017. Mexico Diario Oficial de la Federación; 2004.
  21. 21United Kingdom Environment Agency (UKEA). Soil Guidance Values for Inorganic Arsenic in Soil. Science Report SC050021/arsenic SGV. Rotherdam: UKEA; 2009.
  22. 22Canadian Council of Ministers of the Environment (CCME). Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health. September 2007.
  23. 23Sariñana-Ruiz YA, Vazquez-Arenas J, Sosa-Rodríguez FS, et al. Assessment of arsenic and fluorine in surface soil to determine environmental and health risk factors in the Comarca Lagunera, Mexico. Chemosphere. 2017; 178: 391401. DOI: 10.1016/j.chemosphere.2017.03.032
  24. 24Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Arsenic. Atlanta: ATSDR; 2017.
  25. 25Calderon J, Navarro ME, Jimenez-Capdeville ME, et al. Exposure to arsenic and lead and neuropsychological development in Mexican children. Environ Res. 2001; 85: 6976. DOI: 10.1006/enrs.2000.4106
  26. 26Rosado JL, Ronquillo D, Kordas K, et al. Arsenic exposure and cognitive performance in Mexican schoolchildren. Environ Health Perspect. 2007; 115: 13715. DOI: 10.1289/ehp.9961
  27. 27Roy A, Kordas K, Lopez P, et al. Association between arsenic exposure and behavior among first-graders from Torreon, Mexico. Environ Res. 2011; 111: 6706. DOI: 10.1016/j.envres.2011.03.003
  28. 28Rocha-Amador D, Navarro ME, Carrizales L, Morales R and Calderon J. Decreased intelligence in children and exposure to fluoride and arsenic in drinking water. Cad Saude Publica. 2007; 23 (Suppl4): S57987. DOI: 10.1590/S0102-311X2007001600018
  29. 29Soto-Pena GA, Luna AL, Acosta-Saavedra L, et al. Assessment of lymphocyte subpopulations and cytokine secretion in children exposed to arsenic. FASEB J. 2006; 20: 77981. DOI: 10.1096/fj.05-4860fje
  30. 30Pineda-Zavaleta AP, Garcia-Vargas G, Borja-Aburto VH, et al. Nitric oxide and superoxide anion production in monocytes from children exposed to arsenic and lead in region Lagunera, Mexico. Toxicol Appl Pharmacol. 2004; 198: 28390. DOI: 10.1016/j.taap.2003.10.034
  31. 31Olivas-Calderon E, Recio-Vega R, Gandolfi AJ, et al. Lung inflammation biomarkers and lung function in children chronically exposed to arsenic. Toxicol Appl Pharmacol. 2015; 287: 1617. DOI: 10.1016/j.taap.2015.06.001
  32. 32Recio-Vega R, Gonzalez-Cortes T, Olivas-Calderon E, Lantz RC, Gandolfi AJ and Gonzalez-De Alba C. In utero and early childhood exposure to arsenic decreases lung function in children. J Appl Toxicol. 2015; 35: 35866. DOI: 10.1002/jat.3023
  33. 33Gamiño-Gutierrez SP, Gonzalez-Perez CI, Gonsebatt ME and Monroy-Fernandez MG. Arsenic and lead contamination in urban soils of Villa de la Paz (Mexico) affected by historical mine wastes and its effect on children’s health studied by micronucleated exfoliated cells assay. Environ Geochem Health. 2013; 35: 3751. DOI: 10.1007/s10653-012-9469-8
  34. 34Jasso-Pineda Y, Diaz-Barriga F, Calderon J, Yanez L, Carrizales L and Perez-Maldonado IN. DNA damage and decreased DNA repair in peripheral blood mononuclear cells in individuals exposed to arsenic and lead in a mining site. Biol Trace Elem Res. 2012; 146: 1419. DOI: 10.1007/s12011-011-9237-0
  35. 35Sampayo-Reyes A, Hernandez A, El-Yamani N, et al. Arsenic induces DNA damage in environmentally exposed Mexican children and adults. Influence of GSTO1 and AS3MT polymorphisms. Toxicol Sci. 2010; 117: 6371. DOI: 10.1093/toxsci/kfq173
  36. 36Gonzalez-Cortes T, Recio-Vega R, Lantz RC and Chau BT. DNA methylation of extracellular matrix remodeling genes in children exposed to arsenic. Toxicol Appl Pharmacol. 2017; 329: 14047. DOI: 10.1016/j.taap.2017.06.001
  37. 37Laine JE, Bailey KA, Rubio-Andrade M, et al. Maternal arsenic exposure, arsenic methylation efficiency, and birth outcomes in the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Mexico. Environ Health Perspect. 2015; 123: 18692.
  38. 38Rager JE, Bailey KA, Smeester L, et al. Prenatal arsenic exposure and the epigenome: altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood. Environ Mol Mutagen. 2014; 55: 196208. DOI: 10.1002/em.21842
  39. 39Perez-Vazquez MS, Ochoa-Martinez AC, RuIz-Vera T, Araiza-Gamboa Y and Perez-Maldonado IN. Evaluation of epigenetic alterations (mir-126 and mir-155 expression levels) in Mexican children exposed to inorganic arsenic via drinking water. Environ Sci Pollut Res Int. 2017; 24(36): 2803628045. DOI: 10.1007/s11356-017-0367-6
  40. 40Alegria-Torres JA, Carrizales-Yanez L, Diaz-Barriga F, et al. DNA methylation changes in Mexican children exposed to arsenic from two historic mining areas in San Luis Potosi. Environ Mol Mutagen. 2016; 57: 71723. DOI: 10.1002/em.22062
  41. 41Osorio-Yáñez C, Ayllon-Vergara JC, Aguilar-Madrid G, et al. Carotid intima-media thickness and plasma asymmetric dimethylarginine in Mexican children exposed to inorganic arsenic. Environ Health Perspect. 2013; 121: 10906.
  42. 42Osorio-Yáñez C, Ayllon-Vergara JC, Arreola-Mendoza L, et al. Blood pressure, left ventricular geometry, and systolic function in children exposed to inorganic arsenic. Environ Health Perspect. 2015; 123: 62935.
  43. 43Cárdenas-González M, Osorio-Yáñez C, Gaspar-Ramírez O, et al. Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1. Environ Res. 2016; 150: 65362. DOI: 10.1016/j.envres.2016.06.032
  44. 44National Research Council (NRC). Fluoride in Drinking Water: A Scientific Review of EPA’s Standards. Washington, DC: The National Academies Press; 2006.
  45. 45Hernandez-Martinez CT, Medina-Solis CE, Robles-Bermeo NL, et al. Oral hygiene customs in 61–2 year old schoolchildren. Rev Invest Clin. 2014; 66: 15763.
  46. 46Hernández-Guerrero JC, de la Fuente HJ, Ledesma-Montes C, Fontana-Uribe B and Jiménez-Farfán D. Fluoride concentration in toothpastes of the Mexican market. Bol Méd Hosp Infantil Mex. 2005; 62: 1924.
  47. 47Secretaría de Salud (SSA). Aviso de Cancelación del Proyecto de Norma Oficial Mexicana PROY-219-SSA12-002, Límites máximos de concentración de fuoruros en productos higiénico-odontológicos e insumos de uso odontológicos fluorados. Mexico: Diario Oficial de la Federación; 2011.
  48. 48De la Cruz Cardoso D, Tapia Sandoval S, Sánchez Barrón C and Pinelo Bolaños P. Fluoride intake from toothpaste use in preschoolers. Revista Odonto Ciência; 2010.
  49. 49Molina-Frechero N, Durán-Merino D, Castañeda-Castaneira E, Juárez-López MLA. La caries y su relación con la higiene oral en preescolares mexicanos. Gac Méd Mex. 2015; 151: 48590. https://www.anmm.org.mx/GMM/2015/n4/GMM_151_2015_4_4854-90.pdf.
  50. 50Maguire A, Zohouri FV, Hindmarch PN, Hatts J and Moynihan PJ. Fluoride intake and urinary excretion in 6- to 7-year-old children living in optimally, sub-optimally and non-fluoridated areas. Comm Dent Oral Epid. 2007; 35: 47988. DOI: 10.1111/j.1600-0528.2006.00366.x
  51. 51Peckham S and Awofeso N. Water fluoridation: a critical review of the physiological effects of ingested fluoride as a public health intervention. Scientific World J. 2014; 2014: 293019. DOI: 10.1155/2014/293019
  52. 52Garcia-Perez A, Irigoyen-Camacho ME and Borges-Yanez A. Fluorosis and dental caries in Mexican schoolchildren residing in areas with different water fluoride concentrations and receiving fluoridated salt. Caries Res. 2013; 47: 299308. DOI: 10.1159/000346616
  53. 53Barquera S, Campirano F, Bonvecchio A, Hernandez-Barrera L, Rivera JA and Popkin BM. Caloric beverage consumption patterns in Mexican children. Nutr J. 2010; 9: 47. DOI: 10.1186/1475-2891-9-47
  54. 54Loyola-Rodríguez JP, Pozos-Guillén AJ and Hernández-Guerrero JC. Bottled drinks as additional source of fluoride exposure. Salud Publica Mex. 1998; 40: 43831. DOI: 10.1590/S0036-36341998000500008
  55. 55Denbesten P and Li W. Chronic fluoride toxicity: dental fluorosis. Monogr Oral Sci. 2011; 22: 8196. DOI: 10.1159/000327028
  56. 56Soto-Rojas AE, Urena-Cirett JL and Martinez-Mier EA. A review of the prevalence of dental fluorosis in Mexico. Rev Panam Salud Pub. 2004; 15: 918. DOI: 10.1590/S1020-49892004000100003
  57. 57Aguilar-Diaz FDC, Morales-Corona F, Cintra-Viveiro AC and Fuente-Hernandez J. Prevalence of dental fluorosis in Mexico 20052-015: a literature review. Salud Publica Mex. 2017; 59: 30613.
  58. 58Choi AL, Sun G, Zhang Y and Grandjean P. Developmental fluoride neurotoxicity: a systematic review and meta-analysis. Environ Health Perspect. 2012; 120: 13628. DOI: 10.1289/ehp.1104912
  59. 59Valdez Jimenez L, Lopez Guzman OD, Cervantes Flores M, et al. In utero exposure to fluoride and cognitive development delay in infants. Neurotoxicology. 2017; 59: 6570. DOI: 10.1016/j.neuro.2016.12.011
  60. 60Singh N, Verma KG, Verma P, Sidhu GK and Sachdeva S. A comparative study of fluoride ingestion levels, serum thyroid hormone & TSH level derangements, dental fluorosis status among school children from endemic and non-endemic fluorosis areas. Springerplus. 2014; 3: 7. DOI: 10.1186/2193-1801-3-7
  61. 61Xiang Q, Chen L, Liang Y, Wu M and Chen B. Fluoride and thyroid function in children in two villages in China. J Toxicol Environ Health Sci. 2009; 1: 05459.
  62. 62Dharmaratne RW. Fluoride in drinking water and diet: the causative factor of chronic kidney diseases in the North Central Province of Sri Lanka. Environ Health Prev Med. 2015; 20: 23742. DOI: 10.1007/s12199-015-0464-4
  63. 63Xiong XZ, Liu JL, He WH, et al. Dose-effect relationship between drinking water fluoride levels and damage to liver and kidney functions in children. Environ Res. 2007; 103: 11216. DOI: 10.1016/j.envres.2006.05.008
  64. 64Liu H, Gao Y, Sun L, Li M, Li B and Sun D. Assessment of relationship on excess fluoride intake from drinking water and carotid atherosclerosis development in adults in fluoride endemic areas, China. International J Hyg Environ Health. 2014; 217: 41320. DOI: 10.1016/j.ijheh.2013.08.001
  65. 65Karademir S, Akcam M, Kuybulu AE, Olgar S and Oktem F. Effects of fluorosis on QT dispersion, heart rate variability and echocardiographic parameters in children. The Anatolian J Cardiology. 2011; 15055. DOI: 10.5152/akd.2011.038
  66. 66Tseng CH. A review on environmental factors regulating arsenic methylation in humans. Toxicol Appl Pharmacol. 2009; 235: 338350. DOI: 10.1016/j.taap.2008.12.016
  67. 67Mizuta N, Mizuta M, Ito F, et al. An outbreak of acute arsenic poisoning caused by arsenic contaminated soy-sauce (shoyu): a clinical report of 220 caces. Bull Yamaguchi Med School. 1956; 4: 13150. DOI: 10.2169/naika.45.867
  68. 68United States Environmental Protection Agency (USEPA). Regional Screening Levels (RSLs) – Generic Tables (June 2017). Washington, DC: USEPA; 2017.
  69. 69United States Environmental Protection Agency (USEPA). Fluoride: Dose-Response Analysis For Non-cancer Effects. 820-R-019. Health and Ecological Criteria Division, Office of Water. Washington, DC: USEPA; 2010.
  70. 70Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for fluorides, hydrogen fluoride and fluorine. Atlanta: ATSDR; 2003.
  71. 71Health Canada (HC). Fourth Report on Human Biomonitoring of Environmental Chemicals in Canada. Results of the Canadian Health Measures Survey Cycle 4. 9780-6600-85272-. Ottawa, Ontario: Health Canada; 2017: 232.
  72. 72Intitute of Medicine Standing Committee on the Scientific Evaluation of Dietary References I. Fluoride. In: National Academies Press, ed. Washington D.C.: National Academies Press (US); 1997: 288313.
  73. 73Signes-Pastor AJ, Vioque J, Navarrete-Munoz EM, et al. Concentrations of urinary arsenic species in relation to rice and seafood consumption among children living in Spain. Environ Res. 2017; 159: 6975. DOI: 10.1016/j.envres.2017.07.046
  74. 74Skroder Loveborn H, Kippler M, Lu Y, et al. Arsenic Metabolism in Children Differs From That in Adults. Toxicol Sci. 2016; 152: 2939. DOI: 10.1093/toxsci/kfw060
  75. 75Sun G, Xu Y, Li X, Jin Y, Li B and Sun X. Urinary Arsenic Metabolites in Children and Adults Exposed to Arsenic in Drinking Water in Inner Mongolia, China. Environ Health Perspect. 2007; 115: 64852. DOI: 10.1289/ehp.9271
  76. 76Torres-Sanchez L, Lopez-Carrillo L, Rosado JL, et al. Sex differences in the reduction of arsenic methylation capacity as a function of urinary total and inorganic arsenic in Mexican children. Environ Res. 2016; 151: 3843. DOI: 10.1016/j.envres.2016.07.020
  77. 77Hays SM, Becker RA, Leung HW, Aylward LL and Pyatt DW. Biomonitoring equivalents: a screening approach for interpreting biomonitoring results from a public health risk perspective. Regul Toxicol Pharmacol. 2007; 47: 96109. DOI: 10.1016/j.yrtph.2006.08.004
  78. 78Hays SM, Aylward LL, Gagne M, Nong A and Krishnan K. Biomonitoring equivalents for inorganic arsenic. Regul Toxicol Pharmacol. 2010; 58:19. DOI: 10.1016/j.yrtph.2010.06.002
  79. 79Schulz C, Wilhelm M, Heudorf U and Kolossa-Gehring M. Update of the reference and HBM values derived by the German Human Biomonitoring Commission. Int J Hyg Environ Health. 2011; 215: 2635. DOI: 10.1016/j.ijheh.2011.06.007
  80. 80Bashash M, Thomas D, Hu H, et al. Prenatal Fluoride Exposure and Cognitive Outcomes in Children at 4 and 6–12 Years of Age in Mexico. Environ Health Perspect. 2017; 125: 097017. DOI: 10.1289/EHP655
  81. 81Buzalaf MA and Whitford GM. Fluoride metabolism. Monogr Oral Sci. 2011; 22: 2036. DOI: 10.1159/000325107
  82. 82Villa A, Anabalon M, Zohouri V, Maguire A, Franco AM and Rugg-Gunn A. Relationships between fluoride intake, urinary fluoride excretion and fluoride retention in children and adults: an analysis of available data. Caries Res. 2010; 44: 608. DOI: 10.1159/000279325
  83. 83Erdal S and Buchanan SN. A quantitative look at fluorosis, fluoride exposure, and intake in children using a health risk assessment approach. Environ Health Perspect. 2005; 113: 1117. DOI: 10.1289/ehp.7077
  84. 84Aylward LL, Hays SM, Vezina A, Deveau M, St-Amand A and Nong A. Biomonitoring Equivalents for interpretation of urinary fluoride. Regul Toxicol Pharmacol. 2015; 72: 15867. DOI: 10.1016/j.yrtph.2015.04.005
  85. 85Umweltbundesamt (UBA). Levels of selected substances in blood and urine of children in Germany. German Environmental Survey for children 2003/06-GerES (IV) human biomonitoring. Dessau-Roßlau: UBA; 2008.
  86. 86Kafaei R, Tahmasbi R, Ravanipour M, et al. Urinary arsenic, cadmium, manganese, nickel, and vanadium levels of schoolchildren in the vicinity of the industrialised area of Asaluyeh, Iran. Environ Sci Pollut Res Int. 2017; 24: 23498507. DOI: 10.1007/s11356-017-9981-6
  87. 87Arcega-Cabrera F, Fargher LF, Oceguera-Vargas I, et al. Water Consumption as Source of Arsenic, Chromium, and Mercury in Children Living in Rural Yucatan, Mexico: Blood and Urine Levels. Bull Environ Contam Toxicol; 2017.
  88. 88Arcega-Cabrera F and Fargher LF. Education, fish consumption, well water, chicken coops, and cooking fires: Using biogeochemistry and ethnography to study exposure of children from Yucatan, Mexico to metals and arsenic. Sci Total Environ. 2016; 568: 7582. DOI: 10.1016/j.scitotenv.2016.05.209
  89. 89Kordas K, Queirolo EI, Manay N, et al. Low-level arsenic exposure: Nutritional and dietary predictors in first-grade Uruguayan children. Environ Res. 2016; 147: 1623. DOI: 10.1016/j.envres.2016.01.022
  90. 90Signes-Pastor AJ, Carey M, Vioque J, et al. Urinary Arsenic Speciation in Children and Pregnant Women from Spain. Expo Health. 2017; 9: 10511. DOI: 10.1007/s12403-016-0225-7
  91. 91Molina-Villalba I, Lacasana M, Rodriguez-Barranco M, et al. Biomonitoring of arsenic, cadmium, lead, manganese and mercury in urine and hair of children living near mining and industrial areas. Chemosphere. 2015; 124: 8391. DOI: 10.1016/j.chemosphere.2014.11.016
  92. 92Centers for Disease Control and Prevention (CDC). Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables, January 2017. In: Services DoHaH, ed. Atlanta, GA; 2017.
  93. 93Davis MA, Mackenzie TA, Cottingham KL, Gilbert-Diamond D, Punshon T and Karagas MR. Rice consumption and urinary arsenic concentrations in U.S. children. Environ Health Perspect. 2012; 120: 141824. DOI: 10.1289/ehp.1205014
  94. 94Caldwell KL, Jones RL, Verdon CP, Jarrett JM, Caudill SP and Osterloh JD. Levels of urinary total and speciated arsenic in the US population: National Health and Nutrition Examination Survey 20032-004. J Expo Sci Environ Epidemiol. 2009; 19: 5968. DOI: 10.1038/jes.2008.32
  95. 95Ramsubhag S, Naidu RS, Narinesingh D, Teelucksingh S. Urinary fluoride levels in children in a single school in Trinidad and Tobago: a preliminary investigation. West Indian Med J. 2006; 55: 4403. DOI: 10.1590/S0043-31442006000600014
  96. 96Jimenez-Farfan MD, Hernandez-Guerrero JC, Juarez-Lopez LA, Jacinto-Aleman LF and de la Fuente-Hernandez J. Fluoride consumption and its impact on oral health. Int J Environ Res Public Health. 2011; 8: 14860. DOI: 10.3390/ijerph8010148
  97. 97Wang C, Gao Y, Wang W, et al. A national cross-sectional study on effects of fluoride-safe water supply on the prevalence of fluorosis in China. BMJ Open. 2012; 2. DOI: 10.1136/bmjopen-2012-001564
  98. 98Zohoori FV and Maguire A. Determining an Upper Reference Value for the Urinary Fluoride-Creatinine Ratio in Healthy Children Younger than 7 Years. Caries Res. 2017; 51: 28389. DOI: 10.1159/000472263
  99. 99Moreno ME, Acosta-Saavedra LC, Meza-Figueroa D, et al. Biomonitoring of metal in children living in a mine tailings zone in Southern Mexico: A pilot study. Int J Hyg Environ Health. 2010; 213: 2528. DOI: 10.1016/j.ijheh.2010.03.005
  100. 100Luna AL, Acosta-Saavedra LC, Lopez-Carrillo L, et al. Arsenic alters monocyte superoxide anion and nitric oxide production in environmentally exposed children. Toxicol Appl Pharmacol. 2010; 245: 24451. DOI: 10.1016/j.taap.2010.03.006
  101. 101Meza-Montenegro MM, Valenzuela-Quintanar AI, Balderas-Cortes JJ, et al. Exposure assessment of organochlorine pesticides, arsenic, and lead in children from the major agricultural areas in Sonora, Mexico. Arch Environ Contam Toxicol. 2013; 64: 51927. DOI: 10.1007/s00244-012-9846-4
  102. 102Grijalva-Haro MI, Barba-Leyva ME and Laborin-Alvarez A. Fluoride intake and excretion in children of Hermosillo, Sonora, Mexico. Salud Publica Mex. 2001; 43: 12734.
  103. 103Rocha-Amador DO, Calderon J, Carrizales L, Costilla-Salazar R and Perez-Maldonado I. Apoptosis of peripheral blood mononuclear cells in children exposed to arsenic and fluoride. Environ Toxicol Pharmacol. 2011; 32: 399405. DOI: 10.1016/j.etap.2011.08.004
  104. 104Estrada-Capetillo BL, Ortiz-Perez MD, Salgado-Bustamante M, et al. Arsenic and fluoride co-exposure affects the expression of apoptotic and inflammatory genes and proteins in mononuclear cells from children. Mutat Res Genet Toxicol Environ Mutagen. 2014; 761: 2734. DOI: 10.1016/j.mrgentox.2014.01.006
  105. 105Jarquin-Yanez L, de Jesus Mejia-Saavedra J, Molina-Frechero N, et al. Association between urine fluoride and dental fluorosis as a toxicity factor in a rural community in the state of San Luis Potosi. Scientific World Journal. 2015; 2015: 647184. DOI: 10.1155/2015/647184
  106. 106Suwazono Y, Akesson A, Alfven T, Jarup L and Vahter M. Creatinine versus specific gravity-adjusted urinary cadmium concentrations. Biomarkers. 2005; 10: 11726. DOI: 10.1080/13547500500159001
  107. 107Schulz C, Angerer J, Ewers U, Heudorf U and Wilhelm M. Revised and new reference values for environmental pollutants in urine or blood of children in Germany derived from the German environmental survey on children 20032-006 (GerES IV). Int J Hyg Environ Health. 2009; 212: 63747. DOI: 10.1016/j.ijheh.2009.05.003
  108. 108National Research Council (NRC). Critical Aspects of EPA’s IRIS Assessment of Inorganic Arsenic: Interim Report. Washington, DC: The National Academies Press; 2013.
  109. 109Camps J and Garcia-Heredia A. Introduction: oxidation and inflammation, a molecular link between non-communicable diseases. Adv Exp Med Biol. 2014; 824: 14. DOI: 10.1007/978-3-319-07320-0_1
  110. 110Prüss-Ustün A, Wolf J, Corvalán C, Bos R and Neira M. Preventing disease through healthy environments: A global assessment of the burden of disease from environmental risks. Geneva. http://apps.who.int/iris/bitstream/10665/204585/1/9789241565196_eng.pdf?ua=1. Accessed 2016.
  111. 111Srivastava RK and Bachani D. Burden of NCDs, Policies and Programme for Prevention and Control of NCDs in India. Indian J Community Med. 2011; 36: S7S12. DOI: 10.4103/0970-0218.94703
  112. 112Yunus M, Sohel N, Hore SK and Rahman M. Arsenic exposure and adverse health effects: A review of recent findings from arsenic and health studies in Matlab, Bangladesh. The Kaohsiung J of Medical Sciences. 2011; 27: 37176. DOI: 10.1016/j.kjms.2011.05.012
  113. 113Abegunde DO, Mathers CD, Adam T, Ortegon M and Strong K. The burden and costs of chronic diseases in low-income and middle-income countries. Lancet. 2007; 370: 192938. DOI: 10.1016/S0140-6736(07)61696-1
  114. 114Nigra AE, Sanchez TR, Nachman KE, et al. The effect of the Environmental Protection Agency maximum contaminant level on arsenic exposure in the USA from 2003 to 2014: an analysis of the National Health and Nutrition Examination Survey (NHANES). The Lancet Public Health. 2017; 2: e513e21. DOI: 10.1016/S2468-2667(17)30195-0
  115. 115Ko L and Thiessen KM. A critique of recent economic evaluations of community water fluoridation. Int J Occup Environ Health. 2015; 21: 91120. DOI: 10.1179/2049396714Y.0000000093
  116. 116Fewtrell L, Fuge R and Kay D. An estimation of the global burden of disease due to skin lesions caused by arsenic in drinking water. J Water Health. 2005; 3: 1017. DOI: 10.2166/wh.2005.0011
  117. 117Oberoi S, Barchowsky A and Wu F. The global burden of disease for skin, lung, and bladder cancer caused by arsenic in food. Cancer Epidemiol Biomarkers Prev. 2014; 23: 118794. DOI: 10.1158/1055-9965.EPI-13-1317
  118. 118Fewtrell L, Smith S, Kay D and Bartram J. An attempt to estimate the global burden of disease due to fluoride in drinking water. J Water Health. 2006; 4: 53342. DOI: 10.2166/wh.2006.0036
  119. 119Ochoa-Martinez AC, Orta-Garcia ST, Rico-Escobar EM, et al. Exposure Assessment to Environmental Chemicals in Children from Ciudad Juarez, Chihuahua, Mexico. Arch Environ Cont Toxicol. 2016; 70: 657670. DOI: 10.1007/s00244-016-0273-9
DOI: https://doi.org/10.29024/aogh.913 | Journal eISSN: 2214-9996
Language: English
Published on: Jul 27, 2018
Published by: Levy Library Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Jorge H. Limón-Pacheco, Mónica I. Jiménez-Córdova, Mariana Cárdenas-González, Ilse M. Sánchez Retana, María E. Gonsebatt, Luz M. Del Razo, published by Levy Library Press
This work is licensed under the Creative Commons Attribution 4.0 License.