Have a personal or library account? Click to login
Assessment of 8-hydroxy-2-deoxyguanosine activity, apoptosis, acetylcholinesterase and antioxidant enzyme activity in Capoeta umbla brain exposed to chlorpyrifos Cover

Assessment of 8-hydroxy-2-deoxyguanosine activity, apoptosis, acetylcholinesterase and antioxidant enzyme activity in Capoeta umbla brain exposed to chlorpyrifos

By: Mahinur Kirici  
Open Access
|Jul 2022

References

  1. Adedara, I. A., Owoeye, O., Awogbindin, I. O., Ajayi, B. O., Rocha, J. B. T., & Farombi, E. O. (2018). Diphenyl diselenide abrogates brain oxidative injury and neurobehavioural deficits associated with pesticide chlorpyrifos exposure in rats. Chemico-Biological Interactions, 296, 105–116. https://doi.org/10.1016/j.cbi.2018.09.016 PMID:30267645
  2. Aebi, H. (1983). Catalase. In H. U. Bergmeyer (Ed.), Methods in enzymatic analysis (pp. 673–684). Academic Press.
  3. Alak, G., Parlak, V., Aslan, M. E., Uçar, A., Atamanalp, M., & Turkez, H. (2019c). Borax supplementation alleviates hematotoxicity and DNA damage in rainbow trout (Oncorhynchus mykiss) exposed to copper. Biological Trace Element Research, 187(2), 536–542. https://doi.org/10.1007/s12011-018-1399-6 PMID:29926392
  4. Alak, G., Parlak, V., Ucar, A., Yeltekin, A. C., Ozgeris, F. B., Cağlar, O., Atamanalp, M., & Turkez, H. (2020). Oxidative and DNA damage potential of colemanite on zebrafish: Brain, liver and blood. Turkish Journal of Fisheries and Aquatic Sciences, 20(8), 593–602. https://doi.org/10.4194/1303-2712-v20_8_02
  5. Alak, G., Uçar, A., Parlak, V., Yeltekin, A. C., Özgeriş, F. B., Atamanalp, M., & Turkez, H. (2021). Antioxidant potential of Ulexite in Zebrafish brain: Assessment of oxidative DNA damage, apoptosis, and response of antioxidant defense system. Biological Trace Element Research, 199(3), 1092–1099. https://doi.org/10.1007/s12011-020-02231-7 PMID:32557103
  6. Alak, G., Ucar, A., Parlak, V., Yeltekin, A. C., Taş, I. H., Ölmez, D., Kocaman, E. M., Yılgın, M., Atamanalp, M., & Yanık, T. (2017b). Assessment of 8-hydroxy-2-deoxyguanosine activity, gene expression and antioxidant enzyme activity on rainbow trout (Oncorhynchus mykiss) tissues exposed to biopesticide. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP, 203, 51–58. https://doi.org/10.1016/j.cbpc.2017.10.007 PMID:29111472
  7. Alak, G., Yeltekin, A. C., Tas, I. H., Ucar, A., Parlak, V., Topal, A., Kocaman, E. M., & Atamanalp, M. (2017a). Investigation of 8-OHdG, CYP1A, HSP70 and transcriptional analyses of antioxidant defence system in liver tissues of rainbow trout exposed to eprinomectin. Fish & Shellfish Immunology, 65, 136–144. https://doi.org/10.1016/j.fsi.2017.04.004 PMID:28400213
  8. Alak, G., Yeltekin, A. C., Özgeriş, F. B., Parlak, V., Uçar, A., Keleş, M. S., & Atamanalp, M. (2019b). Therapeutic effect of N- acetyl cysteine as an antioxidant on rainbow trout’s brain in cypermethrin toxicity. Chemosphere, 221, 30–36. https://doi.org/10.1016/j.chemosphere.2018.12.196 PMID:30634146
  9. Alak, G., Ucar, A., Yeltekin, A. C., Parlak, V., Nardemir, G., Kızılkaya, M., Taş, İ. H., Yılgın, M., Atamanalp, M., Topal, A., Kocaman, E. M., & Yanık, T. (2019a). Neurophysiological responses in the brain tissues of rainbow trout (Oncorhynchus mykiss) treated with bio-pesticide. Drug and Chemical Toxicology, 42(2), 203–209. https://doi.org/10.1080/01480545.2018.1 526180 PMID:30449198
  10. Ali, D., Nagpure, N. S., Kumar, S., Kumar, R., Kushwaha, B., & Lakra, W. S. (2009). Assessment of genotoxic and mutagenic effects of chlorpyrifos in freshwater fish Channa punctatus (Bloch) using micronucleus assay and alkaline single-cell gel electrophoresis. Food and Chemical Toxicology, 47(3), 650–656. https://doi.org/10.1016/j.fct.2008.12.021 PMID:19141310
  11. Almeida, J. R., Oliveira, C., Gravato, C., & Guilhermino, L. (2010). Linking behavioural alterations with biomarkers responses in the European seabass Dicentrarchus labrax L. exposed to the organophosphate pesticide fenitrothion. Ecotoxicology (London, England), 19(8), 1369–1381. https://doi.org/10.1007/s10646-010-0523-y PMID:20686920
  12. Atamanalp, M., Parlak, V., Özgeriş, F. B., Yeltekin, A. C., Ucar, A., Keleş, M. S., & Alak, G. (2021). Treatment of oxidative stress, apoptosis, and DNA injury with N-acetylcysteine at simulative pesticide toxicity in fish. Toxicology Mechanisms and Methods, 31(3), 224–234. https://doi.org/10.1080/15376516.2021.1871794 PMID:33412942
  13. Beutler, E. (1971). Red cell metabolism manual of biochemical methods. Academic Press.
  14. Bhattacharjee, R., & Sil, P. C. (2006). The protein fraction of Phyllanthus niruri plays a protective role against acetaminophen induced hepatic disorder via its antioxidant properties. Phytotherapy Research, 20(7), 595– 601. https://doi.org/10.1002/ptr.1933 PMID:16718736
  15. Bhattacharya, S. (1993). Target and non-target effects of anticholinesterase pesticides in fish. The Science of the Total Environment, 134(S2), 859–866. https://doi.org/10.1016/S0048-9697(05)80092-0
  16. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3 PMID:942051
  17. Carlberg, I., & Mannervik, B. (1975). Purification and characterization of the flavoenzyme glutathione reductase from rat liver. The Journal of Biological Chemistry, 250(14), 5475–5480. https://doi.org/10.1016/S0021-9258(19)41206-4 PMID:237922
  18. Cazenave, J., Bistoni, M. L., Pesce, S. F., & Wunderlin, D. A. (2006). Differential detoxification and antioxidant response in diverse organs of Corydoras paleatus experimentally exposed to microcystin-RR. Aquatic Toxicology (Amsterdam, Netherlands), 76(1), 1–12. https://doi.org/10.1016/j.aquatox.2005.08.011 PMID:16263184
  19. Da Cuña, R. H., Rey Vázquez, G., Piol, M. N., Guerrero, N. V., Maggese, M. C., & Lo Nostro, F. L. (2011). Assessment of the acute toxicity of the organochlorine pesticide endosulfan in Cichlasoma dimerus (Teleostei, Perciformes). Ecotoxicology and Environmental Safety, 74(4), 1065– 1073. https://doi.org/10.1016/j.ecoenv.2011.02.002 PMID:21377734
  20. Deb, N., & Das, S. (2013). Chlorpyrifos toxicity in fish: A review. Current World Environment, 8(1), 77–84. https://doi.org/10.12944/CWE.8.1.17
  21. Donepudi, M., & Grütter, M. G. (2002). Structure and zymogen activation of caspases. Biophysical Chemistry, 101-102, 145–153. https://doi.org/10.1016/S0301-4622(02)00151-5 PMID:12487996
  22. Ellman, G. L., Courtney, K. D., Andres, V., Jr., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9 PMID:13726518
  23. Fırat, Ö., & Aytekin, T. (2018). Effect of neonicotinoid insecticide thiamethoxam on oxidative stress parameters in Oreochromis niloticus. Journal of Balikesir University Institute of Science and Technology, 20(2), 224–234. https://doi.org/10.25092/baunfbed.427757
  24. Gholami-Seyedkolaei, S. J., Mirvaghefi, A., Farahmand, H., & Kosari, A. A. (2013). Effect of a glyphosate-based herbicide in Cyprinus carpio: Assessment of acetylcholinesterase activity, hematological responses and serum biochemical parameters. Ecotoxicology and Environmental Safety, 98, 135–141. https://doi.org/10.1016/j.ecoenv.2013.09.011 PMID:24075644
  25. Glusczak, L., dos Santos Miron, D., Crestani, M., Braga da Fonseca, M., de Araújo Pedron, F., Duarte, M. F., & Vieira, V. L. (2006). Effect of glyphosate herbicide on acetylcholinesterase activity and metabolic and hematological parameters in piava (Leporinus obtusidens). Ecotoxicology and Environmental Safety, 65(2), 237– 241. https://doi.org/10.1016/j.ecoenv.2005.07.017 PMID:16174533
  26. Golovanova, I. L., Kuz’mina, V. V., Gobzhelian, T. E., Pavlov, D. F., & Chuiko, G. M. (1999). In vitro effects of cadmium and DDVP (dichlorvos) on intestinal carbohydrase and protease activities in freshwater teleosts. Comparative Biochemistry and Physiology. Part C, Pharmacology, Toxicology & Endocrinology, 122(1), 21–25. https://doi.org/10.1016/S0742-8413(98)10063-4 PMID:10190024
  27. Gutteridge, J. M. (1995). Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clinical Chemistry, 41(12 Pt 2), 1819–1828. https://doi.org/10.1093/clinchem/41.12.1819 PMID:7497639
  28. Hengartner, M. O. (2000). The biochemistry of apoptosis. Nature, 407(6805), 770–776. https://doi.org/10.1038/35037710 PMID:11048727
  29. İspir, U., Kirici, M., Yonar, M. E., & Mişe Yonar, S. (2017). Response of antioxidant system to formalin in the whole body of rainbow trout, Oncorhynchus mykiss. Cellular and Molecular Biology, 63(1), 13–16. https://doi.org/10.14715/cmb/2017.63.1.3 PMID:28234619
  30. Jalili-Nik, M., Sadeghi, M. M., Mohtashami, E., Mollazadeh, H., Afshari, A. R., & Sahebkar, A. (2020). Zerumbone promotes cytotoxicity in human malignant glioblastoma cells through reactive oxygen species (ROS) generation. Oxidative Medicine and Cellular Longevity, 2020, 3237983. Advance online publication. https://doi.org/10.1155/2020/3237983 PMID:32454937
  31. Jurma, O. P., Hom, D. G., & Andersen, J. K. (1997). Decreased glutathione results in calcium-mediated cell death in PC12. Free Radical Biology & Medicine, 23(7), 1055–1066. https://doi.org/10.1016/S0891-5849(97)00134-2 PMID:9358249
  32. Kavitha, P., & Rao, J. V. (2008). Toxic effects of chlorpyrifos on antioxidant enzymes and target enzyme acetylcholinesterase interaction in mosquito fish, Gambusia affinis. Environmental Toxicology and Pharmacology, 26(2), 192–198. https://doi.org/10.1016/j. etap.2008.03.010 PMID:21783910
  33. Kirby, M. F., Morris, S., Hurst, M., Kirby, S. J., Neall, P., Tylor, T., & Fagg, A. (2000). The use of cholinesterase activity in flounder (Platichthys flesus) muscle tissue as a biomarker of neurotoxic contamination in UK estuaries. Marine Pollution Bulletin, 40(9), 780–791. https://doi.org/10.1016/S0025-326X(00)00069-2
  34. Kirici, M., Kirici, M., Atamanalp, M., & Beydemir, Ş. (2021). Purification of glutathione reductase from some tissues of Capoeta umbla and the inhibitory effects of some metal ions on enzyme activity. Marine Science and Technology Bulletin, 10(2), 193–200. https://doi.org/10.33714/masteb.769454
  35. Kirici, M., Turk, C., Caglayan, C., & Kirici, M. (2017). Toxic effects of copper sulphate pentahydrate on antioxidant enzyme activities and lipid peroxidation of freshwater fish Capoeta umbla (Heckel, 1843) tissues. Applied Ecology and Environmental Research, 15(3), 1685–1696. https://doi.org/10.15666/aeer/1503_16851696
  36. Kokushi, E., Uno, S., Pal, S., & Koyama, J. (2015). Effects of chlorpyrifos on the metabolome of the freshwater carp, Cyprinus carpio. Environmental Toxicology, 30(3), 253–260. https://doi.org/10.1002/tox.21903 PMID:23997021
  37. Lazarevic-Pasti, T., Leskovac, A., Momic, T., Petrovic, S., & Vasic, V. (2017). Modulators of acetylcholinesterase activity: From Alzheimer’s disease to anti-cancer drugs. Current Medicinal Chemistry, 24(30), 3283–3309. https://doi.org/10 .2174/0929867324666170705123509 PMID:28685687
  38. Mishra, A., & Devi, Y. (2014). Histopathological alterations in the brain (optic tectum) of the fresh water teleost Channa punctatus in response to acute and subchronic exposure to the pesticide Chlorpyrifos. Acta Histochemica, 116(1), 176–181. https://doi.org/10.1016/j.acthis.2013.07.001 PMID:23948667
  39. Modesto, K. A., & Martinez, C. B. (2010). Effects of Roundup Transorb on fish: Hematology, antioxidant defenses and acetylcholinesterase activity. Chemosphere, 81(6), 781– 787. https://doi.org/10.1016/j.chemosphere.2010.07.005 PMID:20684975
  40. Monteiro, S. M., dos Santos, N. M., Calejo, M., Fontaínhas-Fernandes, A., & Sousa, M. (2009). Copper toxicity in gills of the teleost fish, Oreochromis niloticus: Effects in apoptosis induction and cell proliferation. Aquatic Toxicology (Amsterdam, Netherlands), 94(3), 219–228. https://doi.org/10.1016/j.aquatox.2009.07.008 PMID:19656581
  41. Oliva, M., González de Canales, M. L., Gravato, C., Guilhermino, L., & Perales, J. A. (2010). Biochemical effects and polycyclic aromatic hydrocarbons (PAHs) in senegal sole (Solea senegalensis) from a Huelva estuary (SW Spain). Ecotoxicology and Environmental Safety, 73(8), 1842–1851. https://doi.org/10.1016/j.ecoenv.2010.08.035 PMID:20843549
  42. Parlak, V. (2018). Evaluation of apoptosis, oxidative stress responses, AChE activity and body malformations in zebrafish (Danio rerio) embryos exposed to deltamethrin. Chemosphere, 207, 397–403. https://doi.org/10.1016/j. chemosphere.2018.05.112 PMID:29803889
  43. Placer, Z. A., Cushman, L. L., & Johnson, B. C. (1966). Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical Biochemistry, 16(2), 359–364. https://doi.org/10.1016/0003-2697(66)90167-9 PMID:6007581
  44. Qu, C., Yang, W., Xu, Q., Sun, J., Lu, M., Wang, Y., Liu, C., Wang, W., Wang, L., & Song, L. (2018). A novel effector caspase (Caspase-3/7-1) involved in the regulation of immune homeostasis in Chinese mitten crab Eriocheir sinensis. Fish & Shellfish Immunology, 83, 76–83. https://doi.org/10.1016/j. fsi.2018.09.013 PMID:30195917
  45. Rosenfeld, C., Kousba, A., & Sultatos, L. G. (2001). Interactions of rat brain acetylcholinesterase with the detergent Triton X-100 and the organophosphate paraoxon. Toxicological Sciences, 63(2), 208–213. https://doi.org/10.1093/toxsci/63.2.208 PMID:11568364
  46. Schmidel, A. J., Assmann, K. L., Werlang, C. C., Bertoncello, K. T., Francescon, F., Rambo, C. L., Beltrame, G. M., Calegari, D., Batista, C. B., Blaser, R. E., Roman Júnior, W. A., Conterato, G. M., Piato, A. L., Zanatta, L., Magro, J. D., & Rosemberg, D. B. (2014). Subchronic atrazine exposure changes defensive behaviour profile and disrupts brain acetylcholinesterase activity of zebrafish. Neurotoxicology and Teratology, 44, 62–69. https://doi.org/10.1016/j.ntt.2014.05.006 PMID:24893294
  47. Shi, Y., Wang, F., He, J., Yadav, S., & Wang, H. (2010). Titanium dioxide nanoparticles cause apoptosis in BEAS-2B cells through the caspase 8/t-Bid-independent mitochondrial pathway. Toxicology Letters, 196(1), 21–27. https://doi.org/10.1016/j.toxlet.2010.03.014 PMID:20362650
  48. Song, Y., Zhu, L. S., Wang, J., Wang, J. H., Liu, W., & Xie, H. (2009). DNA damage and effects on antioxidative enzymes in earthworm (Eiseniafoetida) induced by atrazine. Soil Biology & Biochemistry, 41(5), 905–909. https://doi.org/10.1016/j.soilbio.2008.09.009
  49. Soukhtanloo, M., Mohtashami, E., Maghrouni, A., Mollazadeh, H., Mousavi, S. H., Roshan, M. K., Tabatabaeizadeh, S. A., Hosseini, A., Vahedi, M. M., Jalili-Nik, M., & Afshari, A. R. (2020). Natural products as promising targets in glioblastoma multiforme: A focus on NF-κB signaling pathway. Pharmacological Reports, 72(2), 285–295. https://doi.org/10.1007/s43440-020-00081-7 PMID:32152926
  50. Stara, A., Machova, J., & Velisek, J. (2012). Effect of chronic exposure to simazine on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.). Environmental Toxicology and Pharmacology, 33(2), 334–343. https://doi.org/10.1016/j.etap.2011.12.019 PMID:22301164
  51. Sun, Y., Oberley, L. W., & Li, Y. (1988). A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34(3), 497–500. https://doi.org/10.1093/clinchem/34.3.497 PMID:3349599
  52. Tabassum, H., Afjal, M. A., Khan, J., Raisuddin, S., & Parvez, S. (2015). Neurotoxicological assessment of pendimethalin in freshwater fish Channa punctata Bloch. Ecological Indicators, 58, 411–417. https://doi.org/10.1016/j. ecolind.2015.06.008
  53. Teng, M., Zhou, Y., Song, M., Dong, K., Chen, X., Wang, C., Bi, S., & Zhu, W. (2019). Chronic toxic effects of Flutolanil on the liver of Zebrafish (Danio rerio). Chemical Research in Toxicology, 32(6), 995–1001. https://doi.org/10.1021/acs. chemrestox.8b00300 PMID:30942079
  54. Tomatır, A. G. (2003). Apoptosis: Programmed cell death. Turkiye Klinikleri Journal of Medical Sciences, 23(6), 499–508.
  55. Topal, A., Alak, G., Altun, S., Erol, H. S., & Atamanalp, M. (2017b). Evaluation of 8-hydroxy-2-deoxyguanosine and NFkB activation, oxidative stress response, acetylcholinesterase activity, and histopathological changes in rainbow trout brain exposed to linuron. Environmental Toxicology and Pharmacology, 49, 14–20. https://doi.org/10.1016/j. etap.2016.11.009 PMID:27886567
  56. Topal, A., Alak, G., Ozkaraca, M., Yeltekin, A. C., Comaklı, S., Acıl, G., Kokturk, M., & Atamanalp, M. (2017a). Neurotoxic responses in brain tissues of rainbow trout exposed to imidacloprid pesticide: Assessment of 8-hydroxy-2-deoxyguanosine activity, oxidative stress and acetylcholinesterase activity. Chemosphere, 175, 186–191. https://doi.org/10.1016/j.chemosphere.2017.02.047 PMID:28219821
  57. Topal, A., Atamanalp, M., Oruç, E., Halıcı, M. B., Şişecioğlu, M., Erol, H. S., Gergit, A., & Yılmaz, B. (2015). Neurotoxic effects of nickel chloride in the rainbow trout brain: Assessment of c-Fos activity, antioxidant responses, acetylcholinesterase activity, and histopathological changes. Fish Physiology and Biochemistry, 41(3), 625–634. https://doi.org/10.1007/s10695-015-0033-1 PMID:25666867
  58. Topal, A., Atamanalp, M., Oruç, E., Kırıcı, M., & Kocaman, E. M. (2014). Apoptotic effects and glucose-6-phosphate dehydrogenase responses in liver and gill tissues of rainbow trout treated with chlorpyrifos. Tissue & Cell, 46(6), 490–496. https://doi.org/10.1016/j.tice.2014.09.001 PMID:25438950
  59. Toroser, D., Orr, W. C., & Sohal, R. S. (2007). Carbonylation of mitochondrial proteins in Drosophila melanogaster during aging. Biochemical and Biophysical Research Communications, 363(2), 418–424. https://doi.org/10.1016/j.bbrc.2007.08.193 PMID:17884014
  60. Uçar, A., Parlak, V., Alak, G., Atamanalp, M., & Şişecioğlu, M. (2020a). Toxicity mechanisms of chlorpyrifos on tissues of rainbow trout and brown trout: Evaluation of oxidative stress responses and acetylcholinesterase enzymes activity. Iranian Journal of Fisheries Science, 19(4), 2106– 2117. https://doi.org/10.22092/ijfs.2019.119763.
  61. Uçar, A., Parlak, V., Özgeriş, F. B., Yeltekin, A. C., Alak, G., & Atamanalp, M. (2020b). Determination of Fipronil toxicity by different biomarkers in gill and liver tissue of rainbow trout (Oncorhynchus mykiss). In Vitro Cellular & Developmental Biology. Animal, 56, 543–549. https://doi.org/10.1007/s11626-020-00480-3 PMID:32860191
  62. Ullah, S., Li, Z., Hasan, Z., Khan, S. U., & Fahad, S. (2018). Malathion induced oxidative stress leads to histopathological and biochemical toxicity in the liver of rohu (Labeo rohita, Hamilton) at acute concentration. Ecotoxicology and Environmental Safety, 161, 270–280. https://doi.org/10.1016/j.ecoenv.2018.06.002 PMID:29886314
  63. Vasylkiv, O. Y., Kubrak, O. I., Storey, K. B., & Lushchak, V. I. (2011). Catalase activity as a potential vital biomarker of fish intoxication by the herbicide aminotriazole. Pesticide Biochemistry and Physiology, 101(1), 1–5. https://doi.org/10.1016/j.pestbp.2011.05.005
  64. Xing, H., Li, S., Wang, Z., Gao, X., Xu, S., & Wang, X. (2012b). Oxidative stress response and histopathological changes due to atrazine and chlorpyrifos exposure in common carp. Pesticide Biochemistry and Physiology, 103(1), 74–80. https://doi.org/10.1016/j.pestbp.2012.03.007
  65. Xing, H., Li, S., Wang, Z., Gao, X., Xu, S., & Wang, X. (2012a). Histopathological changes and antioxidant response in brain and kidney of common carp exposed to atrazine and chlorpyrifos. Chemosphere, 88(4), 377–383. https://doi.org/10.1016/j.chemosphere.2012.02.049 PMID:22436588
  66. Xing, H., Wang, J., Li, J., Fan, Z., Wang, M., & Xu, S. (2010). Effects of atrazine and chlorpyrifos on acetylcholinesterase and Carboxylesterase in brain and muscle of common carp. Environmental Toxicology and Pharmacology, 30(1), 26–30. https://doi.org/10.1016/j.etap.2010.03.009 PMID:21787625
  67. Xing, H., Wu, H., Sun, G., Zhang, Z., Xu, S., & Li, S. (2013). Alterations in activity and mRNA expression of acetylcholinesterase in the liver, kidney and gill of common carp exposed to atrazine and chlorpyrifos. Environmental Toxicology and Pharmacology, 35(1), 47–54. https://doi.org/10.1016/j. etap.2012.11.004 PMID:23237783
  68. Xu, G. W., Yao, Q. H., Weng, Q. F., Su, B. L., Zhang, X., & Xiong, J. H. (2004). Study of urinary 8-hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in diabetic nephropathy patients. Journal of Pharmaceutical and Biomedical Analysis, 36(1), 101–104. https://doi.org/10.1016/j.jpba.2004.04.016 PMID:15351053
  69. Yonar, M. E., Ispir, U., Mişe Yonar, S., & Kirici, M. (2016). Effect of copper sulphate on the antioxidant parameters in the rainbow trout fry, Oncorhynchus mykiss. Cellular and Molecular Biology, 62(6), 55–58. PMID:27262803
  70. Yonar, S. M., Sakin, F., Yonar, M. E., Ispir, U., & Kırıcı, M. (2011). Oxidative stress biomarkers of exposure to deltamethrin in rainbow trout fry (Oncorhynchus mykiss). Fresenius Environmental Bulletin, 20(8), 1931–1935.
  71. Zeinali, T., Karimi, L., Hosseinahli, N., Shanehbandi, D., Mansoori, B., Mohammadi, A., Hajiasgharzadeh, K., Babaloo, Z., Majidi-Zolbanin, J., & Baradaran, B. (2020). Overexpression of miRNA-145 induces apoptosis and prevents proliferation and migration of MKN-45 gastric cancer cells. EXCLI Journal, 19, 1446–1458. https://doi.org/10.17179/excli2020-2777 PMID:33250681
  72. Zhang, J. F., Liu, H., Sun, Y. Y., Wang, X. R., Wu, J. C., & Xue, Y. Q. (2005). Responses of the antioxidant defenses of the Goldfish Carassius auratus, exposed to 2,4-dichlorophenol. Environmental Toxicology and Pharmacology, 19(1), 185–190. https://doi.org/10.1016/j.etap.2004.07.001 PMID:21783475
DOI: https://doi.org/10.26881/oandhs-2022.2.05 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 167 - 177
Submitted on: Mar 14, 2022
Accepted on: Apr 26, 2022
Published on: Jul 7, 2022
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Mahinur Kirici, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.