Have a personal or library account? Click to login
Assessing fish length-otolith relationships in Scorpaenidae species: Implications for sustainable fisheries management in Antalya Bay, Türkiye Cover

Assessing fish length-otolith relationships in Scorpaenidae species: Implications for sustainable fisheries management in Antalya Bay, Türkiye

Open Access
|Dec 2025

References

  1. Adandédjan, D., Lalèyè, P., & Gourène, G. (2012). Macroinvertebrates communities of coastal lagoon in Southern Benin, West Africa. International Journal of Biological and Chemical Sciences, 6(3), 1233–1252. https://doi.org/10.4314/ijbcs.v6i3.27
  2. Adandédjan, D., Lalèyè, P., Ouattara, A., & Gourène, G. (2011). Distribution of benthic insect fauna in a West African lagoon: The Porto-Novo lagoon in Benin. Asian Journal of Biological Sciences, 4(2), 116–127. https://doi.org/10.3923/ajbs.2011.116.127
  3. Allain, V., & Lorance, P. (2000). Age estimation and growth of some deep-sea fish from the northeast Atlantic Ocean. Cybium, 24(3), 7–16.
  4. Aneesh-Kumar, K. V., Deepa, K. P., Hashim, M., Vasu, C., & Sudhakar, M. (2017). Relationships between fish size and otolith size of four bathydemersal fish species from the Southeastern Arabian Sea, India. Journal of Applied Ichthyology, 33(1), 102–107. https://doi.org/10.1111/jai.13250
  5. Annabi, A., Said, K., & Reichenbacher, B. (2013). Inter population differences in otolith morphology are genetically encoded in the killifish Aphanius fasciatus (Cyprinodontiformes). Scientia Marina, 77(2), 269–279. https://doi.org/10.3989/scimar.03763.02A
  6. Aydin, R., Calta, M., Sen, D., & Coban, M. Z. (2004). Relationships between fish lengths and otolith lengths in the population of Chondrostoma regium (Heckel, 1843) inhabiting Keban Dam Lake. Pakistan Journal of Biological Sciences, 7(9), 1550–1553. https://doi.org/10.3923/pjbs.2004.1550.1553
  7. Bani, A., Poursaeid, S., & Tuset, V. M. (2013). Comparative morphology of the sagittal otolith in three species of South Caspian gobies. Journal of Fish Biology, 82(4), 1321–1332. https://doi.org/10.1111/jfb.12073
  8. Başusta, A., Çetinkaya, B., & Başusta, N. (2020). The relationships between fish size and otolith dimensions in the common sole (Solea solea (Linnaeus, 1758)) captured in the Northeastern Mediterranean. Journal of Applied Ichthyology, 36(6), 888–892. https://doi.org/10.1111/jai.14137
  9. Battaglia, P., Malara, M., Ammendolia, G., Romeo, T., & Andaloro, F. (2015). Relationships between otolith size and fish length in some mesopelagic teleosts (Myctophidae, Paralepididae, Phosichthyidae, and Stomiidae). Journal of Fish Biology, 87(3), 774–782. https://doi.org/10.1111/jfb.12744
  10. Battaglia, P., Malara, D., Romeo, T., & Andaloro, F. (2010). Relationship between otolith size and fish size in some mesopelagic and bathypelagic species from the Mediterranean Sea (Strait of Messina), Italy. Scientia Marina, 74(3), 605–612. https://doi.org/10.3989/scimar.2010.74n3605
  11. Bolognini, L., Domenichetti, F., Grati, F., Polidori, P., Scarcella, G., & Fabi, G. (2013). Weight-length relationships for 20 fish species in the Adriatic Sea. Turkish Journal of Fisheries and Aquatic Sciences, 13(3), 555–560. https://doi.org/10.4194/1303-2712-v13_3_21
  12. Campana, S. E. (2004). Photographic atlas of fish otoliths of the Northwest Atlantic Ocean. NRC Research Press. https://doi.org/10.1139/9780660191089
  13. Campana, S. E., Chouinard, G. A., Hanson, J. M., Frechet, A., & Brattey, J. (2000). Otolith elemental fingerprints as biological tracers of fish stocks. Fisheries Research, 46(1–3), 343–357. https://doi.org/10.1016/S0165-7836(00)00158-2
  14. Dinh, Q. M., Qin, J. G., & Tran, D. D. (2015). Population and age structure of the goby Parapocryptes serperaster (Richardson, 1864; Gobiidae: Oxudercinae) in the Mekong Delta. Turkish Journal of Fisheries and Aquatic Sciences, 15(2), 345357. https://doi.org/10.4194/1303-2712-v15_2_17
  15. Gimenez, J., Manjabacas, A., Tuset, V. M., & Lombarte, A. (2016). Relationships between otolith and fish size from Mediterranean and Northeastern Atlantic species to be used in predator-prey studies. Journal of Fish Biology, 89(4), 2195–2202. https://doi.org/10.1111/jfb.13115
  16. Harvey, J. T., Loughlin, T. R., Perez, M. A., & Oxman, D. S. (2000). Relationship between fish size and otolith length for 63 species of fishes from the Eastern North Pacific Ocean. NOAA Technical Report NMFS, 150(1), 35.
  17. Hureau, J. C., & Litvinenko, N. L. (1986). Scorpaenidae. In P. J. P. Whitehead, M. L. Bauchot, J. C. Hureau, J. Nielsen, & E. Tortnes (Eds.), Fishes of the North-eastern Atlantic and the Mediterranean (Vol. 3, pp. 1211–1229). UNESCO.
  18. Jawad, L., Ambuali, A., Al-Mamry, J., & Al-Busaidi, H. (2011). Relationships between fish length and otolith length, width and weight of the Indian mackerel Rastrelliger kanagurta (Cuvier, 1817) collected from the Sea of Oman. Croatian Journal of Fisheries, 69(2), 51–61.
  19. Kassambara, A. (2023). rstatix: Pipe-friendly framework for basic statistical tests_. R package version 0.7.2. https://CRAN.R-project.org/package=rstatix
  20. Khan, M. A., Nazir, A., & Banday, U. Z. (2018). Utility of otolith weight to estimate age of Labeo bata (Actinopterygii: Cypriniformes: Cyprinidae) inhabiting the Ganga River. Acta Ichthyologia et Piscatoria, 48(3), 257–260. https://doi.org/10.3750/AIEP/02342
  21. Lee, D. H., & Lysak, R. L. (1990). Effects of azimuthal asymmetry on ULF waves in the dipole magnetosphere. Geophysics Research Letters, 17(1), 53–56. https://doi.org/10.1029/GL017i001p00053
  22. Lleonart, J., Salat, J., & Torres, G. J. (2000). Removing allometric effects of body size in morphological analysis. Journal of Theoretical Biology, 205(1), 85–93. https://doi.org/10.1006/jtbi.2000.2043
  23. Lombarte, A., & Lleonart, J. (1993). Otolith size changes related with body growth, habitat depth and temperature. Environmental Biology of Fishes, 37(3), 297–306. https://doi.org/10.1007/bf00004637
  24. Maigret, J., & Ly, B. (1986). Les poissons de mer de Mauritanie (p. 213). Science Nat., Compiègne.
  25. Mat Piah, R., Kamaruddin, S. A., Abdul Kadi, N. H., & Ambak, M. A. (2017). Relationship between otolith measurements with the size of areolate grouper, Epinephelus areolatus in Terengganu waters, Malaysia. Journal of Fisheries and Aquatic Sciences, 12(2), 90–94. https://doi.org/10.3923/jfas.2017.90.94
  26. Megalofonou, P. (2006). Comparison of otolith growth and morphology with somatic growth and age in young-of-the-year bluefin tuna. Journal of Fish Biology, 68(6), 1867–1878. https://doi.org/10.1111/j.1095-8649.2006.01078.x
  27. Mei, W., Yu, G., & Greenwell, B. (2022). ggtrendline: Add trendline and confidence interval to ‘ggplot’. R package version 1.0.3. https://github.com/PhDMeiwp/ggtrendline
  28. Mommsen, T. P. (1998). Growth and metabolism. In D. H. Evans (Ed.), The physiology of fishes (pp. 65–97). CRC Press.
  29. Nazir, A., & Khan, M. A. (2019). Relationships between fish length, otolith size and otolith weight in Sperata aor (Bagridae) and Labeo bata (Cyprinidae) from the Ganga river, India. Zoology and Ecology, 29(2), 90–95. https://doi.org/10.35513/21658005.2019.2.3
  30. Nguyen, T. H. D., & Dinh, Q. M. (2020). Otolith dimensions and their relationship with the size of Glossogobius sparsipapillus fish along the coastline of Mekong Delta, Vietnam. Egyptian Journal of Aquatic Biology and Fisheries, 24(2), 525–533. https://doi.org/10.21608/ejabf.2020.86013
  31. Nolf, D. (1995). Studies on fossil otoliths – The state of the art. In D. H. Secor, J. M. Dean, & S. E. Campana (Eds.), Recent developments in fish otolith research (pp. 513–544). University of South Carolina Press.
  32. Ordines, F., Quetglas, A., Massutí, E., & Moranta, J. (2009). Habitat preferences and life history of the red scorpion fish, Scorpaena notata, in the Mediterranean. Estuarine, Coastal and Shelf Sciences, 85(4), 537–546. https://doi.org/10.1016/j.ecss.2009.09.020
  33. Palmer, A. R. (1994). Fluctuating asymmetry analyses: A primer. In T. A. Markow (Ed.), Developmental instability: Its origins and evolutionary implications (pp. 335–364). Kluwer Academic Publishers. https://doi.org/10.1007/978-94-011-0830-0_26
  34. Park, J. M., Gaston, T. F., Riedel, R., & Williamson, J. E. (2018). Biometric relationships between body and otolith measurements in nine demersal fishes from North-eastern Tasmanian waters, Australia. Journal of Applied Ichthyology, 34(4), 801–805. https://doi.org/10.1111/jai.13612
  35. Popper, A. N., & Lu, Z. (2000). Structure–function relationships in fish otolith organs. Fisheries Research, 46(1), 15–25. https://doi.org/10.1016/S0165-7836(00)00129-6
  36. Richter, H. C., Luckstadt, C., Focken, U., & Becker, K. (2000). An improved procedure to assess fish condition on the basis of length-weight relationships. Archieve of Fisheries and Marine Research, 48(3), 255–264.
  37. Safran, P. (1992). Theoretical analysis of the weight-length relationships in the juveniles. Marine Biology, 12(4), 545–551. https://doi.org/10.1007/BF00346171
  38. Sanches, J. G. (1991). Catálogo dos principais peixes marinhos da República de Guiné-Bissau (p. 429). Publication Avuls Instituto Nacional de Investigacao das Pescas, Lisbon (Portugal) por, 16.
  39. Schneider, W. (1990). FAO species identification sheets for fishery purposes. Field guide to the commercial marine resources of the Gulf of Guinea. Prepared and published with the support of the FAO Regional Office for Africa (p. 268). FAO.
  40. Souza, G. M., Tubino, R. D., Monteiro-Neto, C., & Costa, M. R. (2019). Relationships between fish and otolith dimensions of Pomatomus saltatrix (Linnaeus, 1766) (Perciformes: Pomatomidae) in Southeastern Brazil. Neotropical Ichthyology, 17(1), e180032. https://doi.org/10.1590/1982-0224-20180032
  41. Takasuka, A., Oozeki, Y., Aoki, I., Kimura, R., Kubota, H., Sugisaki, H., & Akamine, T. (2008). Growth effect on the otolith and somatic size relationship in Japanese anchovy and sardine larvae. Fisheries Science, 74(2), 308–313. https://doi.org/10.1111/j.1444-2906.2008.01519.x
  42. Tarkan, S. A., Gaygusuz, G. C., Gaygusuz, O., & Acipinar, H. (2007). Use of bone and otolith measures for size-estimation of fish in predator-prey studies. Folia Zoologica, 56(3), 328–336.
  43. Valinassab, T., Seifabadi, J., Homauni, H., & Bandpei, M. A. A. (2012). Relationships between fish size and otolith morphology in ten clupeids from the Persian Gulf and Gulf of Oman. Cybium, 36(4), 505–509.
  44. Viva, C., Sartor, P., Bertolini, D., De Ranieri, S., & Ligas, A. (2015). Relationship of otolith length to fish total length in six demersal species from the NW Mediterranean Sea. Journal of Applied Ichthyology, 31(3), 973–974. https://doi.org/10.1111/jai.12838
  45. Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag.
  46. Yılmaz, S., Emiroğlu, Ö, Aksu, S., Başkurt, S., & Polat, N. (2019). Relationships between otolith dimensions and body growth of North African Catfish (Burchell, 1822) from the upper basin of the Sakarya river, Turkey. Croatian Journal of Fisheries, 77(1), 57–62. https://doi.org/10.2478/cjf-2019-0006
DOI: https://doi.org/10.26881/oahs-2025.1.30 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 353 - 363
Submitted on: Oct 28, 2025
|
Accepted on: Dec 8, 2025
|
Published on: Dec 31, 2025
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Habil Uğur Koca, Seval Bahadir Koca, Mehmet Cilbiz, Laith A. Jawad, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.