Have a personal or library account? Click to login
Experimental observations on ultrastructure of scales of red seabream (Pagrosomus major) for seawater pH monitoring Cover

Experimental observations on ultrastructure of scales of red seabream (Pagrosomus major) for seawater pH monitoring

Open Access
|Dec 2025

References

  1. Abdullah, H. Z., Idris, M. I., Te Chuan, L., Dermawan, S. K., & Jaffri, M. Z. (2023). Natural hydroxyapatite from black tilapia fish bones and scales for biomedical applications. In: Wan Kamarul Zaman, W. S. & Nurul, A. A. (eds), Sustainable Material for Biomedical Engineering Application. Singapore: Springer Nature Singapore, 107-124. https://doi.org/10.1007/978-981-99-2267-3_6
  2. Alkaladi, A., Harabawy, A. S., & Mekkawy, I. A. (2013). Scale characteristics of two fish species, Acanthopagrus bifasciatus (Forsskål, 1775) and Rhabdosargus sarba (Forsskål, 1775) from the Red Sea at Jeddah, Saudi Arabia. Pakistan Journal of Biological Sciences: PJBS, 16(8), 362–371. https://doi.org/10.3923/pjbs.2013.362.371
  3. Alves, A. L., Marques, A. L., Martins, E., Silva, T. H., & Reis, R. L. (2017). Cosmetic potential of marine fish skin collagen. Cosmetics, 4(4), 39. https://doi.org/10.3390/cosmetics4040039
  4. Antczak, M., & Bodzioch, A. (2018). Diversity of fish scales in Late Triassic deposits of Krasiejów (SW Poland). Paleontological Research, 22(1), 91–100. https://doi.org/10.2517/2017PR012
  5. Bergstad, O. A. (1991). Distribution and trophic ecology of some gadoid fish of the Norwegian deep: 2. Food-web linkages and comparisons of diets and distributions. Sarsia, 75(4), 315–325. https://doi.org/10.1080/00364827.1991.10413456
  6. Bielajew, B. J., Hu, J. C., & Athanasiou, K. A. (2020). Collagen: Quantification, biomechanics and role of minor subtypes in cartilage. Nature Reviews Materials, 5(10), 730–747. https://doi.org/10.1038/s41578-020-0213-1
  7. Cai, L., Wu, X., Dong, Z., Li, X., Yi, S., & Li, J. (2014). Physicochemical responses and quality changes of red sea bream (Pagrosomus major) to gum arabic coating enriched with ergothioneine treatment during refrigerated storage. Food Chemistry, 160(2014), 82–89. https://doi.org/10.1016/j.foodchem.2014.03.093
  8. Caldeira, K., & Wickett, M. E. (2003). Anthropogenic carbon and ocean pH. Nature, 425(6956), 365–365. https://doi.org/10.1038/425365a
  9. Caldeira, K., & Wickett, M. E. (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. Journal of Geophysical Research, 110, 1–12. https://doi.org/10.1029/2004JC002671
  10. Cooley, S. R., & Doney, S. C. (2009). Anticipating ocean acidification’s economic consequences for commercial fisheries. Environmental Research Letters, 4(2), 024007. https://doi.org/10.1088/1748-9326/4/2/024007
  11. Cui, X., Friedman, M., Yu, Y., Zhu, Y. A., & Zhu, M. (2023). Bony-fish-like scales in a Silurian maxillate placoderm. Nature Communications, 14(1), 7622. https://doi.org/10.1038/s41467-023-43557-9
  12. Damodaran, S. & Parkin, K. L. (2017). Amino acids, peptides, and proteins. In: Damodaran, S., Parkin, K. L. & Fennema, O. R. (eds), Fennema’s food chemistry. Boca Raton: CRC Press, 235–356.
  13. Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009). Ocean acidification: The other CO2 problem. Annual Review of Marine Science, 1(1), 169–192. https://doi.org/10.1146/annurev.marine.010908.163834
  14. Echreshavi, S., Al Jufaili, S. M., & Esmaeili, H. R. (2023). Imaging scale surface topography of an endemic cyprinid fish, Garra sharq from the Arabian Peninsula: An integrated optical light and scanning electron microscopy approach. Acta Zoologica, 104(4), 657–676. https://doi.org/10.1111/azo.12449
  15. Esmaeili, H. R., Zarei, F., Sanjarani Vahed, N., & Masoudi, M. (2019). Scale morphology and phylogenetic character mapping of scale-surface microstructures in sixteen Aphanius species (Teleostei: Aphaniidae). Micron, 119(2019), 39–53. https://doi.org/10.1016/j.micron.2019.01.002
  16. Feely, R. A., Alin, S. R., Newton, J., Sabine, C. L., Warner, M., Devol, A., Krembs, C., & Maloy, C. (2010). The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuarine, Coastal and Shelf Science, 88(4), 442–449. https://doi.org/10.1016/j.ecss.2010.05.004
  17. Feely, R. A., Doney, S. C., & Cooley, S. R. (2009). Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography, 22(4), 36–47. https://www.jstor.org/stable/24861022. https://doi.org/10.5670/oceanog.2009.95
  18. Foster, W. J., Hirtz, J. A., Farrell, C., Reistroffer, M., Twitchett, R. J., & Martindale, R. C. (2022). Bioindicators of severe ocean acidification are absent from the end-Permian mass extinction. Scientific Reports, 12(1), 1202. https://doi.org/10.1038/s41598-022-04991-9
  19. Fouda, M. M. (1979). Studies on scale structure in the common goby Pomatoschistus microps Krøyer. Journal of Fish Biology, 15(2), 173–183. https://doi.org/10.1111/j.1095-8649.1979. tb03581.x
  20. Frimodt, C. (1995). Multilingual illustrated guide to the world’s commercial coldwater fish (pp. xix+–244). Oxford.
  21. Fu, J., Chen, C., & Chu, Y. (2019). Spatial–temporal variations of oceanographic parameters in the Zhoushan sea area of the East China Sea based on remote sensing datasets. Regional Studies in Marine Science, 28(2019), 100626. https://doi.org/10.1016/j.rsma. 2019.100626
  22. Gattuso, J. P., & Hansson, L. (Eds.). (2011). Ocean acidification. Oxford University Press.
  23. Gaylord, B., Rivest, E., Hill, T., Sanford, E., Shukla, P., Ninokawa, A., & Ng, G. (2018). California mussels as bio-indicators of ocean acidification. California’s Fourth Climate Change Assessment.
  24. Gil-Díaz, T., Haroun, R., Tuya, F., Betancor, S., & Viera-Rodriguez, M. A. (2014). Effects of ocean acidification on the brown alga Padina pavonica: Decalcification due to acute and chronic events. Plos One, 9(9), e108630. https://doi.org/10.1371/journal.pone.0108630
  25. Hamm, R. (1986). Functional properties of the myofibrillar system and their measurements. In (P. J. Bechtel Ed.). Muscle as food. Food Science and Technology (pp. 135–191). Academic Press Inc. https://doi.org/10.1016/B978-0-12-084190-5.50009-6
  26. Harabawy, A. S. A. (2002). Biological and taxonomic studies on some fish species of the genus Lethrinus (Family: Lethrinidae) from the Red Sea, Egypt and the genus Abramis (Family: Cyprinidae) from the Baltic drainage [Doctoral dissertation, Ph.D. Thesis, Assiut University, Egypt].
  27. Harabawy, A. S., Mekkawy, I. A., & Alkaladi, A. (2012). Identification of three fish species of genus Plectorhynchus from the Red Sea by their scale characteristics. Life Science Journal, 9(4), 4472–4485. https://doi.org/10.7537/marslsj090412.673
  28. Hutchinson, J. J., & Trueman, C. N. (2006). Stable isotope analyses of collagen in fish scales: Limitations set by scale architecture. Journal of Fish Biology, 69(6), 1874–1880. https://doi.org/10.1111/j.1095-8649.2006.01234.x
  29. Ibáñez, A. L., & Jawad, L. A. (2018). Morphometric variation of fish scales among some species of rattail fish from New Zealand waters. Journal of the Marine Biological Association of the United Kingdom, 98(8), 1991–1998. https://doi.org/10.1017/S0025315418000024
  30. Iglesias-Rodriguez, M. D. (2012). Ocean acidification. In: Orcutt, J. (ed.), Earth system monitoring: Selected entries from the encyclopedia of sustainability science and technology. Berlin: Springer, 269–289. https://doi.org/10.1007/978-1-4614-5684-1_12
  31. Kaur, R., & Dua, A. (2012). Fish scales as indicators of wastewater toxicity from an international water channel Tung Dhab drain. Environmental Monitoring and Assessment, 184(5), 2729–2740. https://doi.org/10.1007/s10661-011-2147-y
  32. Kaur, K., Kaur, R., & Kaur, A. (2016). Surface microstructural features of scales in relation to toxic stress of Basic Violet-1. Environmental Science and Pollution Research International, 23(2), 1173–1182. https://doi.org/10.1007/s11356-015-5374-x
  33. Khanna, D. R., Sarkar, P., Gautam, A., & Bhutiani, R. (2007). Fish scales as bio-indicator of water quality of River Ganga. Environmental Monitoring and Assessment, 134(1–3), 153–160. https://doi.org/10.1007/s10661-007-9606-5
  34. Lanzing, W. J. R., & Higginbotham, D. R. (1974). Scanning microscopy of surface structures of Tilapia mossambica (Peters) scales. Journal of Fish Biology, 6(3), 307–310. https://doi.org/10.1111/j.1095-8649.1974.tb04547.x
  35. Lippitsch, E. (1993). A phyletic study on lacustrine haplochromine fishes (Perciformes, Cichlidae) of East Africa, based on scale and squamation characters. Journal of Fish Biology, 42(6), 903–946. https://doi.org/10.1111/j.1095-8649.1993.tb00399.x
  36. Liu, W. T., & Xie, X. (2017). Space observation of carbon dioxide partial pressure at ocean surface. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(12), 5472–5484. https://doi.org/10.1109/JSTARS.2017.2766138
  37. Li, D., Wang, B., Jin, H., Miao, Y., Sun, Q., Lin, H., Li, H., Liu, Q., Zhou, F., & Chen, J. (2024). Decoupling of high-resolution surface pH and DO reveals temporal algal bloom dynamics on the East China Sea. Water Research, 261(2024), 122030. https://doi.org/10.1016/j. watres. 2024.122030
  38. Marshall, D. J., Abdelhady, A. A., Wah, D. T. T., Mustapha, N., Gödeke, S. H., De Silva, L. C., & Hall-Spencer, J. M. (2019). Biomonitoring acidification using marine gastropods. Science of the Total Environment, 692(2019), 833–843. https://doi.org/10.1016/j. scitotenv. 2019.07.041
  39. Mekkawy, I.A.A., Mahmoud, U.M., & Harabawy, A.S.A. (2003). Identification of four Labeo fish species from the Nile, Egypt by their scale characteristics and scanning electron microscopy. Journal of Union of Arab Biologists Cairo. A, Zoology, 19(A):81-104.
  40. Mekkawy, I.A.A., Shehata, S.M.A., Saber, S.A. and Osman, A.G.M. (1999). Scale characteristics of five species of genus Epinephelus (Family: Serranidae) from the Red Sea Egypt. Journal-Egyptian German Society of Zoology, 30(B): 71–102.
  41. Meyer, F.W., Cardini, U., Wild, C. (2015). Ocean Acidification and Related Indicators. In: Armon, R., Hänninen, O. (eds) Environmental Indicators. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9499-2_41
  42. Miller, M. R., Oakes, R. L., Covert, P. A., Ianson, D., & Dower, J. F. (2023). Evidence for an effective defense against ocean acidification in the key bioindicator pteropod Limacina helicina. ICES Journal of Marine Science, 80(5), 1329–1341. https://doi.org/10.1093/icesjms/fsad059
  43. Ní Longphuirt, S., Stengal, D., O’dowd, C., & McGovern, E. (2010). Ocean acidification: An emerging threat to our marine environment. Marine Institute.
  44. NOAA. (2025). Ocean acidification. National Oceanic and Atmospheric Administration. https://www.noaa.gov/education/resource-collections/ocean-coasts/ocean-acidification
  45. Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G. K., Rodgers, K. B., … Yool, A. (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437(7059), 681–686. https://doi.org/10.1038/nature04095
  46. Pal, G. K., & Suresh, P. V. (2017). Comparative assessment of physico-chemical characteristics and fibril formation capacity of thermostable carp scales collagen. Materials Science and Engineering: C, 70(Pt–1), 32–40. https://doi.org/10.1016/j.msec.2016.08.047
  47. Pulikkottil Rajan, D. (2024). Derivatives of Structural Proteins. In: Raman, M., Sasidharan, A., Sabu, S. & Pulikkottil Rajan, D. (eds), Fish structural proteins and its derivatives: Functionality and applications. Singapore: Springer Nature Singapore, 73–105.
  48. Renjith, R. K., Jaiswar, A. K., Chakraborty, S. K., Jahageerdar, S., & Sreekanth, G. B. (2014). Application of scale shape variation in fish systematics-an illustration using six species of the family Nemipteridae (Teleostei: Perciformes). Indian Journal of Fisheries, 61(1), 88–92. https://doi.org/10.21077/
  49. Ridgwell, A., & Schmidt, D. N. (2010). Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. Nature Geoscience, 3(3), 196–200. https://doi.org/10.1038/ngeo755
  50. Rishi, K. K., & Jain, M. (1998). Effect of toxicity of cadmium on scale morphology in Cyprinus carpio (Cyprinidae). Bulletin of Environmental Contamination and Toxicology, 60(2), 323–328. https://doi.org/10.1007/s001289900629
  51. Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., Ono, T., & Rios, A. F. (2004). The oceanic sink for anthropogenic CO2. Science, 305(5682), 367–371. https://doi.org/10.1126/science.1097403
  52. Sarker, S. A., Satoh, S., & Kiron, V. (2005). Supplementation of citric acid and amino acid-chelated trace element to develop environment-friendly feed for red sea bream, Pagrus major. Aquaculture, 248(1–4), 3–11. https://doi.org/10.1016/j.aquaculture.2005.04.012
  53. Shackleton, L. Y. (1987). A comparative study of fossil fish scales from three upwelling regions. South African Journal of Marine Science, 5(1), 79–84. https://doi.org/10.2989/025776187784522270
  54. Silverman, J., Lazar, B., Cao, L., Caldeira, K., & Erez, J. (2009). Coral reefs may start dissolving when atmospheric CO2 doubles. Geophysical Research Letters, 36,1-5(2009). https://doi.org/10.1029/2008GL036282
  55. Solomon S, Qin D, Manning M. Technical summary. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL, Chen ZL, editors. Climate change 2007. The physical science basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. United Kingdom and New York, NY, USA: Cambridge University Press, Cambridge; 2007. p. 19–91.
  56. Tignor, & H. L. Miller (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change.
  57. Sutton, T. T. (2013). Vertical ecology of the pelagic ocean: Classical patterns and new perspectives. Journal of Fish Biology, 83(6), 1508–1527. https://doi.org/10.1111/jfb.12263
  58. Vasanth, K., Kishore, R. K., Sugumaran, V., Krishnamoorthy, R., Ramdas, R., & Tadepalli, S. K. (2025). Multi-variate hybrid modeling for pacific ocean acidification: predicting future pH trends and analyzing key biogeochemical drivers. CSI Transactions on ICT, 13(1), 99-116. https://doi.org/10.1007/s40012-024-00406-4 11
  59. Wainwright, D. K. & Lauder, G. V. 2018. Mucus matters: the slippery and complex surfaces of fish. In: Gorb, S. N. & Gorb, E. V. (eds), Functional Surfaces in Biology III: Diversity of the Physical Phenomena. Cham: Springer International Publishing, 223-246. https://doi.org/10.1007/978-3-319-74144-4_10
  60. Wang, Q., Bai, P., Yang, J., Li, P., Yu, C., Wu, Q., Ruan, Z., & Li, B. (2025). Seafloor temperature variability in the Zhoushan Archipelago: Patterns and mechanisms. Estuarine, Coastal and Shelf Science, 320, 109298. https://doi.org/10.1016/j. ecss.2025.109298
  61. Weiner, S., & Wagner, H. D. (1998). The material bone: Structure-mechanical function relations. Annual Review of Materials Science, 28(1), 271–298. https://doi.org/10.1146/annurev. matsci.28.1.271
  62. Xiao, T., Feng, J., Qiu, Z., Tang, R., Zhao, A., Wong, K., Tsou, J. Y., & Zhang, Y. (2024). Remote-sensing estimation of upwelling-frequent areas in the adjacent waters of Zhoushan (China). Journal of Marine Science and Engineering, 12(7), 1085. https://doi.org/10.3390/jmse12071085
  63. Zeebe, R. E., Zachos, J. C., Caldeira, K., & Tyrrell, T. (2008). Carbon emissions and acidification. Science, 321(5885), 51–52. https://doi.org/10.1126/science.1159124
  64. Zylberberg, L. (1988). Ultrastructural data on the scales of the dipnoan Protoptems annectens (Sarcopterygii, Osteichthyes). Journal of Zoology, 216(1), 55–71. https://doi.org/10.1111/j.1469-7998.1988.tb02415.x
  65. Zylberberg, L. (2004). New data on bone matrix and its proteins. Comptes Rendus Palevol, 3(6–7), 591–604. https://doi.org/10.1016/j.crpv.2004.07.012
  66. Zylberberg, L., & Nicolas, G. (1982). Ultrastructure of scales in a teleost (Carassius auratus L.) after use of rapid freeze-fixation and freeze-substitution. Cell and Tissue Research, 223(2), 349–367. https://doi.org/10.1007/BF01258495
DOI: https://doi.org/10.26881/oahs-2025.1.29 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 380 - 391
Submitted on: Jun 1, 2025
|
Accepted on: Dec 8, 2025
|
Published on: Dec 31, 2025
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Weili Hou, Li Tian, Xin Sun, Xin Li, Xiangming Chen, Haijun Song, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.