References
- Abdullah, H. Z., Idris, M. I., Te Chuan, L., Dermawan, S. K., & Jaffri, M. Z. (2023). Natural hydroxyapatite from black tilapia fish bones and scales for biomedical applications. In: Wan Kamarul Zaman, W. S. & Nurul, A. A. (eds), Sustainable Material for Biomedical Engineering Application. Singapore: Springer Nature Singapore, 107-124. https://doi.org/10.1007/978-981-99-2267-3_6
- Alkaladi, A., Harabawy, A. S., & Mekkawy, I. A. (2013). Scale characteristics of two fish species, Acanthopagrus bifasciatus (Forsskål, 1775) and Rhabdosargus sarba (Forsskål, 1775) from the Red Sea at Jeddah, Saudi Arabia. Pakistan Journal of Biological Sciences: PJBS, 16(8), 362–371. https://doi.org/10.3923/pjbs.2013.362.371
- Alves, A. L., Marques, A. L., Martins, E., Silva, T. H., & Reis, R. L. (2017). Cosmetic potential of marine fish skin collagen. Cosmetics, 4(4), 39. https://doi.org/10.3390/cosmetics4040039
- Antczak, M., & Bodzioch, A. (2018). Diversity of fish scales in Late Triassic deposits of Krasiejów (SW Poland). Paleontological Research, 22(1), 91–100. https://doi.org/10.2517/2017PR012
- Bergstad, O. A. (1991). Distribution and trophic ecology of some gadoid fish of the Norwegian deep: 2. Food-web linkages and comparisons of diets and distributions. Sarsia, 75(4), 315–325. https://doi.org/10.1080/00364827.1991.10413456
- Bielajew, B. J., Hu, J. C., & Athanasiou, K. A. (2020). Collagen: Quantification, biomechanics and role of minor subtypes in cartilage. Nature Reviews Materials, 5(10), 730–747. https://doi.org/10.1038/s41578-020-0213-1
- Cai, L., Wu, X., Dong, Z., Li, X., Yi, S., & Li, J. (2014). Physicochemical responses and quality changes of red sea bream (Pagrosomus major) to gum arabic coating enriched with ergothioneine treatment during refrigerated storage. Food Chemistry, 160(2014), 82–89. https://doi.org/10.1016/j.foodchem.2014.03.093
- Caldeira, K., & Wickett, M. E. (2003). Anthropogenic carbon and ocean pH. Nature, 425(6956), 365–365. https://doi.org/10.1038/425365a
- Caldeira, K., & Wickett, M. E. (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. Journal of Geophysical Research, 110, 1–12. https://doi.org/10.1029/2004JC002671
- Cooley, S. R., & Doney, S. C. (2009). Anticipating ocean acidification’s economic consequences for commercial fisheries. Environmental Research Letters, 4(2), 024007. https://doi.org/10.1088/1748-9326/4/2/024007
- Cui, X., Friedman, M., Yu, Y., Zhu, Y. A., & Zhu, M. (2023). Bony-fish-like scales in a Silurian maxillate placoderm. Nature Communications, 14(1), 7622. https://doi.org/10.1038/s41467-023-43557-9
- Damodaran, S. & Parkin, K. L. (2017). Amino acids, peptides, and proteins. In: Damodaran, S., Parkin, K. L. & Fennema, O. R. (eds), Fennema’s food chemistry. Boca Raton: CRC Press, 235–356.
- Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009). Ocean acidification: The other CO2 problem. Annual Review of Marine Science, 1(1), 169–192. https://doi.org/10.1146/annurev.marine.010908.163834
- Echreshavi, S., Al Jufaili, S. M., & Esmaeili, H. R. (2023). Imaging scale surface topography of an endemic cyprinid fish, Garra sharq from the Arabian Peninsula: An integrated optical light and scanning electron microscopy approach. Acta Zoologica, 104(4), 657–676. https://doi.org/10.1111/azo.12449
- Esmaeili, H. R., Zarei, F., Sanjarani Vahed, N., & Masoudi, M. (2019). Scale morphology and phylogenetic character mapping of scale-surface microstructures in sixteen Aphanius species (Teleostei: Aphaniidae). Micron, 119(2019), 39–53. https://doi.org/10.1016/j.micron.2019.01.002
- Feely, R. A., Alin, S. R., Newton, J., Sabine, C. L., Warner, M., Devol, A., Krembs, C., & Maloy, C. (2010). The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuarine, Coastal and Shelf Science, 88(4), 442–449. https://doi.org/10.1016/j.ecss.2010.05.004
- Feely, R. A., Doney, S. C., & Cooley, S. R. (2009). Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography, 22(4), 36–47. https://www.jstor.org/stable/24861022. https://doi.org/10.5670/oceanog.2009.95
- Foster, W. J., Hirtz, J. A., Farrell, C., Reistroffer, M., Twitchett, R. J., & Martindale, R. C. (2022). Bioindicators of severe ocean acidification are absent from the end-Permian mass extinction. Scientific Reports, 12(1), 1202. https://doi.org/10.1038/s41598-022-04991-9
- Fouda, M. M. (1979). Studies on scale structure in the common goby Pomatoschistus microps Krøyer. Journal of Fish Biology, 15(2), 173–183. https://doi.org/10.1111/j.1095-8649.1979. tb03581.x
- Frimodt, C. (1995). Multilingual illustrated guide to the world’s commercial coldwater fish (pp. xix+–244). Oxford.
- Fu, J., Chen, C., & Chu, Y. (2019). Spatial–temporal variations of oceanographic parameters in the Zhoushan sea area of the East China Sea based on remote sensing datasets. Regional Studies in Marine Science, 28(2019), 100626. https://doi.org/10.1016/j.rsma. 2019.100626
- Gattuso, J. P., & Hansson, L. (Eds.). (2011). Ocean acidification. Oxford University Press.
- Gaylord, B., Rivest, E., Hill, T., Sanford, E., Shukla, P., Ninokawa, A., & Ng, G. (2018). California mussels as bio-indicators of ocean acidification. California’s Fourth Climate Change Assessment.
- Gil-Díaz, T., Haroun, R., Tuya, F., Betancor, S., & Viera-Rodriguez, M. A. (2014). Effects of ocean acidification on the brown alga Padina pavonica: Decalcification due to acute and chronic events. Plos One, 9(9), e108630. https://doi.org/10.1371/journal.pone.0108630
- Hamm, R. (1986). Functional properties of the myofibrillar system and their measurements. In (P. J. Bechtel Ed.). Muscle as food. Food Science and Technology (pp. 135–191). Academic Press Inc. https://doi.org/10.1016/B978-0-12-084190-5.50009-6
- Harabawy, A. S. A. (2002). Biological and taxonomic studies on some fish species of the genus Lethrinus (Family: Lethrinidae) from the Red Sea, Egypt and the genus Abramis (Family: Cyprinidae) from the Baltic drainage [Doctoral dissertation, Ph.D. Thesis, Assiut University, Egypt].
- Harabawy, A. S., Mekkawy, I. A., & Alkaladi, A. (2012). Identification of three fish species of genus Plectorhynchus from the Red Sea by their scale characteristics. Life Science Journal, 9(4), 4472–4485. https://doi.org/10.7537/marslsj090412.673
- Hutchinson, J. J., & Trueman, C. N. (2006). Stable isotope analyses of collagen in fish scales: Limitations set by scale architecture. Journal of Fish Biology, 69(6), 1874–1880. https://doi.org/10.1111/j.1095-8649.2006.01234.x
- Ibáñez, A. L., & Jawad, L. A. (2018). Morphometric variation of fish scales among some species of rattail fish from New Zealand waters. Journal of the Marine Biological Association of the United Kingdom, 98(8), 1991–1998. https://doi.org/10.1017/S0025315418000024
- Iglesias-Rodriguez, M. D. (2012). Ocean acidification. In: Orcutt, J. (ed.), Earth system monitoring: Selected entries from the encyclopedia of sustainability science and technology. Berlin: Springer, 269–289. https://doi.org/10.1007/978-1-4614-5684-1_12
- Kaur, R., & Dua, A. (2012). Fish scales as indicators of wastewater toxicity from an international water channel Tung Dhab drain. Environmental Monitoring and Assessment, 184(5), 2729–2740. https://doi.org/10.1007/s10661-011-2147-y
- Kaur, K., Kaur, R., & Kaur, A. (2016). Surface microstructural features of scales in relation to toxic stress of Basic Violet-1. Environmental Science and Pollution Research International, 23(2), 1173–1182. https://doi.org/10.1007/s11356-015-5374-x
- Khanna, D. R., Sarkar, P., Gautam, A., & Bhutiani, R. (2007). Fish scales as bio-indicator of water quality of River Ganga. Environmental Monitoring and Assessment, 134(1–3), 153–160. https://doi.org/10.1007/s10661-007-9606-5
- Lanzing, W. J. R., & Higginbotham, D. R. (1974). Scanning microscopy of surface structures of Tilapia mossambica (Peters) scales. Journal of Fish Biology, 6(3), 307–310. https://doi.org/10.1111/j.1095-8649.1974.tb04547.x
- Lippitsch, E. (1993). A phyletic study on lacustrine haplochromine fishes (Perciformes, Cichlidae) of East Africa, based on scale and squamation characters. Journal of Fish Biology, 42(6), 903–946. https://doi.org/10.1111/j.1095-8649.1993.tb00399.x
- Liu, W. T., & Xie, X. (2017). Space observation of carbon dioxide partial pressure at ocean surface. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(12), 5472–5484. https://doi.org/10.1109/JSTARS.2017.2766138
- Li, D., Wang, B., Jin, H., Miao, Y., Sun, Q., Lin, H., Li, H., Liu, Q., Zhou, F., & Chen, J. (2024). Decoupling of high-resolution surface pH and DO reveals temporal algal bloom dynamics on the East China Sea. Water Research, 261(2024), 122030. https://doi.org/10.1016/j. watres. 2024.122030
- Marshall, D. J., Abdelhady, A. A., Wah, D. T. T., Mustapha, N., Gödeke, S. H., De Silva, L. C., & Hall-Spencer, J. M. (2019). Biomonitoring acidification using marine gastropods. Science of the Total Environment, 692(2019), 833–843. https://doi.org/10.1016/j. scitotenv. 2019.07.041
- Mekkawy, I.A.A., Mahmoud, U.M., & Harabawy, A.S.A. (2003). Identification of four Labeo fish species from the Nile, Egypt by their scale characteristics and scanning electron microscopy. Journal of Union of Arab Biologists Cairo. A, Zoology, 19(A):81-104.
- Mekkawy, I.A.A., Shehata, S.M.A., Saber, S.A. and Osman, A.G.M. (1999). Scale characteristics of five species of genus Epinephelus (Family: Serranidae) from the Red Sea Egypt. Journal-Egyptian German Society of Zoology, 30(B): 71–102.
- Meyer, F.W., Cardini, U., Wild, C. (2015). Ocean Acidification and Related Indicators. In: Armon, R., Hänninen, O. (eds) Environmental Indicators. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9499-2_41
- Miller, M. R., Oakes, R. L., Covert, P. A., Ianson, D., & Dower, J. F. (2023). Evidence for an effective defense against ocean acidification in the key bioindicator pteropod Limacina helicina. ICES Journal of Marine Science, 80(5), 1329–1341. https://doi.org/10.1093/icesjms/fsad059
- Ní Longphuirt, S., Stengal, D., O’dowd, C., & McGovern, E. (2010). Ocean acidification: An emerging threat to our marine environment. Marine Institute.
- NOAA. (2025). Ocean acidification. National Oceanic and Atmospheric Administration. https://www.noaa.gov/education/resource-collections/ocean-coasts/ocean-acidification
- Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G. K., Rodgers, K. B., … Yool, A. (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437(7059), 681–686. https://doi.org/10.1038/nature04095
- Pal, G. K., & Suresh, P. V. (2017). Comparative assessment of physico-chemical characteristics and fibril formation capacity of thermostable carp scales collagen. Materials Science and Engineering: C, 70(Pt–1), 32–40. https://doi.org/10.1016/j.msec.2016.08.047
- Pulikkottil Rajan, D. (2024). Derivatives of Structural Proteins. In: Raman, M., Sasidharan, A., Sabu, S. & Pulikkottil Rajan, D. (eds), Fish structural proteins and its derivatives: Functionality and applications. Singapore: Springer Nature Singapore, 73–105.
- Renjith, R. K., Jaiswar, A. K., Chakraborty, S. K., Jahageerdar, S., & Sreekanth, G. B. (2014). Application of scale shape variation in fish systematics-an illustration using six species of the family Nemipteridae (Teleostei: Perciformes). Indian Journal of Fisheries, 61(1), 88–92. https://doi.org/10.21077/
- Ridgwell, A., & Schmidt, D. N. (2010). Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. Nature Geoscience, 3(3), 196–200. https://doi.org/10.1038/ngeo755
- Rishi, K. K., & Jain, M. (1998). Effect of toxicity of cadmium on scale morphology in Cyprinus carpio (Cyprinidae). Bulletin of Environmental Contamination and Toxicology, 60(2), 323–328. https://doi.org/10.1007/s001289900629
- Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., Ono, T., & Rios, A. F. (2004). The oceanic sink for anthropogenic CO2. Science, 305(5682), 367–371. https://doi.org/10.1126/science.1097403
- Sarker, S. A., Satoh, S., & Kiron, V. (2005). Supplementation of citric acid and amino acid-chelated trace element to develop environment-friendly feed for red sea bream, Pagrus major. Aquaculture, 248(1–4), 3–11. https://doi.org/10.1016/j.aquaculture.2005.04.012
- Shackleton, L. Y. (1987). A comparative study of fossil fish scales from three upwelling regions. South African Journal of Marine Science, 5(1), 79–84. https://doi.org/10.2989/025776187784522270
- Silverman, J., Lazar, B., Cao, L., Caldeira, K., & Erez, J. (2009). Coral reefs may start dissolving when atmospheric CO2 doubles. Geophysical Research Letters, 36,1-5(2009). https://doi.org/10.1029/2008GL036282
- Solomon S, Qin D, Manning M. Technical summary. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL, Chen ZL, editors. Climate change 2007. The physical science basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. United Kingdom and New York, NY, USA: Cambridge University Press, Cambridge; 2007. p. 19–91.
- Tignor, & H. L. Miller (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change.
- Sutton, T. T. (2013). Vertical ecology of the pelagic ocean: Classical patterns and new perspectives. Journal of Fish Biology, 83(6), 1508–1527. https://doi.org/10.1111/jfb.12263
- Vasanth, K., Kishore, R. K., Sugumaran, V., Krishnamoorthy, R., Ramdas, R., & Tadepalli, S. K. (2025). Multi-variate hybrid modeling for pacific ocean acidification: predicting future pH trends and analyzing key biogeochemical drivers. CSI Transactions on ICT, 13(1), 99-116. https://doi.org/10.1007/s40012-024-00406-4 11
- Wainwright, D. K. & Lauder, G. V. 2018. Mucus matters: the slippery and complex surfaces of fish. In: Gorb, S. N. & Gorb, E. V. (eds), Functional Surfaces in Biology III: Diversity of the Physical Phenomena. Cham: Springer International Publishing, 223-246. https://doi.org/10.1007/978-3-319-74144-4_10
- Wang, Q., Bai, P., Yang, J., Li, P., Yu, C., Wu, Q., Ruan, Z., & Li, B. (2025). Seafloor temperature variability in the Zhoushan Archipelago: Patterns and mechanisms. Estuarine, Coastal and Shelf Science, 320, 109298. https://doi.org/10.1016/j. ecss.2025.109298
- Weiner, S., & Wagner, H. D. (1998). The material bone: Structure-mechanical function relations. Annual Review of Materials Science, 28(1), 271–298. https://doi.org/10.1146/annurev. matsci.28.1.271
- Xiao, T., Feng, J., Qiu, Z., Tang, R., Zhao, A., Wong, K., Tsou, J. Y., & Zhang, Y. (2024). Remote-sensing estimation of upwelling-frequent areas in the adjacent waters of Zhoushan (China). Journal of Marine Science and Engineering, 12(7), 1085. https://doi.org/10.3390/jmse12071085
- Zeebe, R. E., Zachos, J. C., Caldeira, K., & Tyrrell, T. (2008). Carbon emissions and acidification. Science, 321(5885), 51–52. https://doi.org/10.1126/science.1159124
- Zylberberg, L. (1988). Ultrastructural data on the scales of the dipnoan Protoptems annectens (Sarcopterygii, Osteichthyes). Journal of Zoology, 216(1), 55–71. https://doi.org/10.1111/j.1469-7998.1988.tb02415.x
- Zylberberg, L. (2004). New data on bone matrix and its proteins. Comptes Rendus Palevol, 3(6–7), 591–604. https://doi.org/10.1016/j.crpv.2004.07.012
- Zylberberg, L., & Nicolas, G. (1982). Ultrastructure of scales in a teleost (Carassius auratus L.) after use of rapid freeze-fixation and freeze-substitution. Cell and Tissue Research, 223(2), 349–367. https://doi.org/10.1007/BF01258495