References
- Ahsanullah, Khan, S. H., Ahmed, R., & Luqman, M. (2021). Morphological change detection along the shoreline of Karachi, Pakistan using 50 year time series satellite remote sensing data and GIS techniques. Geomatics, Natural Hazards and Risk. https://doi.org/10.1080/19475705.2021.2009044
- Alamgir, A., Khan, M. A., Shaukat, S. S., & Kazmi, J. H. (2023). Monitoring of anthropogenic impact on the Port Qasim coastal area, Karachi, Pakistan. Applied Water Science, 14(1), 4. https://doi.org/10.1007/s13201-023-02055-5
- Avtar, R., Komolafe, A. A., Kouser, A., Singh, D., Yunus, A. P., Dou, J., Kumar, P., Gupta, R. D., Johnson, B. A., Thu Minh, H. V., Aggarwal, A. K., & Kurniawan, T. A. (2020). Assessing sustainable development prospects through remote sensing: A review. Remote Sensing Applications: Society and Environment, 20, 100402. https://doi.org/10.1016/j. rsase.2020.100402
- Bargiel, D. (2017). A new method for crop classification combining time series of radar images and crop phenology information. Remote Sensing of Environment, 198, 369–383. https://doi.org/10.1016/j.rse.2017.06.022
- Bell, P. S., Bird, C. O., & Plater, A. J. (2016). A temporal waterline approach to mapping intertidal areas using X-band marine radar. Coastal Engineering, 107, 84–101. https://doi.org/10.1016/j.coastaleng.2015.09.009
- Buczko, U., Jurasinski, G., Glatzel, S., & Karstens, S. (2022). Blue carbon in coastal phragmites wetlands along the Southern Baltic Sea. Estuaries and Coasts, 45(7), 2274–2282. https://doi.org/10.1007/s12237-022-01085-7
- Campbell, A., & Wang, Y. (2019). High spatial resolution remote sensing for salt marsh mapping and change analysis at fire island national seashore. Remote Sensing, 11(9), 1107. https://doi.org/10.3390/rs11091107
- Catalão, J., & Nico, G. (2017). Multitemporal backscattering logistic analysis for intertidal bathymetry. IEEE Transactions on Geoscience and Remote Sensing, 55(2), 1066–1073. https://doi.org/10.1109/TGRS.2016.2619067
- Chen, X., Yu, S., Chen, J., Zhang, C., Dai, W., & Zhang, Q. (2020). Environmental impact of large-scale tidal flats reclamation in Jiangsu, China. Journal of Coastal Research, 95(sp1), 315–319. https://doi.org/10.2112/SI95-061.1
- Clement, M. A., Kilsby, C. G., & Moore, P. (2018). Multi-temporal synthetic aperture radar flood mapping using change detection. Journal of Flood Risk Management, 11(2), 152–168. https://doi.org/10.1111/jfr3.12303
- Crawford, C. J., Roy, D. P., Arab, S., Barnes, C., Vermote, E., Hulley, G., Gerace, A., Choate, M., Engebretson, C., Micijevic, E., Schmidt, G., Anderson, C., Anderson, M., Bouchard, M., Cook, B., Dittmeier, R., Howard, D., Jenkerson, C., Kim, M., Kleyians, T., Maiersperger, T., Mueller, C., Neigh, C., Owen, L., Page, B., Pahlevan, N., Rengarajan, R., Roger, J. C., Sayler, K., Scaramuzza, P., Skakun, S., Yan, L., Zhang, H. K., Zhu, Z., & Zahn, S. (2023). The 50-year Landsat collection 2 archive. Science of Remote Sensing, 8, 100103. https://doi.org/10.1016/j.srs.2023.100103
- Donchyts, G., Baart, F., Winsemius, H., Gorelick, N., Kwadijk, J., & van de Giesen, N. (2016). Earth’s surface water change over the past 30 years. Nature Climate Change, 6(9), 810–813. https://doi.org/10.1038/nclimate3111
- Dyer, K. R., Christie, M. C., & Wright, E. W. (2000). The classification of intertidal mudflats. Continental Shelf Research, 20(10), 1039–1060. https://doi.org/10.1016/S0278-4343(00)00011-X
- Gong, P., Liu, H., Zhang, M., Li, C., Wang, J., Huang, H., Clinton, N., Ji, L., Li, W., Bai, Y., Chen, B., Xu, B., Zhu, Z., Yuan, C., Ping Suen, H., Guo, J., Xu, N., Li, W., Zhao, Y., Yang, J., Yu, C., Wang, X., Fu, H., Yu, L., Dronova, I., Hui, F., Cheng, X., Shi, X., Xiao, F., Liu, Q., & Song, L. (2019). Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Science Bulletin, 64(6), 370–373. https://doi.org/10.1016/j. scib.2019.03.002
- Hepburn, C., Qi, Y., Stern, N., Ward, B., Xie, C., & Zenghelis, D. (2021). Towards carbon neutrality and China’s 14th Five-Year Plan: Clean energy transition, sustainable urban development, and investment priorities. Environmental Science and Ecotechnology, 8, 100130. https://doi.org/10.1016/j.ese.2021.100130
- Jia, M., Wang, Z., Mao, D., Ren, C., Wang, C., & Wang, Y. (2021). Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine. Remote Sensing of Environment, 255, 112285. https://doi.org/10.1016/j.rse.2021.112285
- Khan, A., Shi, C., & Ali, F. (2024). An integrated approach to strengthening maritime security: A case study of Gwadar Port of Pakistan. Marine Development, 2(1), 14. https://doi.org/10.1007/s44312-024-00027-0
- Kolker, A. S., Allison, M. A., & Hameed, S. (2011). An evaluation of subsidence rates and sea-level variability in the northern Gulf of Mexico. Geophysical Research Letters, 38 (21). https://doi.org/10.1029/2011GL049458
- Mou, T., & Liu, Y. (2025). Utilizing the cloud-based satellite platform to explore the dynamics of coastal aquaculture ponds from 1986 to 2020 in Shandong Province, China. Marine Pollution Bulletin, 211, 117414. https://doi.org/10.1016/j.marpolbul.2024.117414
- Murray, N. J., Phinn, S. R., DeWitt, M., Ferrari, R., Johnston, R., Lyons, M. B., Clinton, N., Thau, D., & Fuller, R. A. (2019). The global distribution and trajectory of tidal flats. Nature, 565(7738), 222–225. https://doi.org/10.1038/s41586-018-0805-8
- Rodríguez, J. F., Saco, P. M., Sandi, S., Saintilan, N., & Riccardi, G. (2017). Potential increase in coastal wetland vulnerability to sea-level rise suggested by considering hydrodynamic attenuation effects. Nature Communications, 8(1), 16094. https://doi.org/10.1038/ncomms16094
- Sagar, S., Roberts, D., Bala, B., & Lymburner, L. (2017). Extracting the intertidal extent and topography of the Australian coastline from a 28 year time series of Landsat observations. Remote Sensing of Environment, 195, 153–169. https://doi.org/10.1016/j.rse.2017.04.009
- Stehman, S. V., & Foody, G. M. (2019). Key issues in rigorous accuracy assessment of land cover products. Remote Sensing of Environment, 231, 111199. https://doi.org/10.1016/j.rse.2019.05.018
- Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., Dejoux, J. F., & Ceschia, E. (2017). Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sensing of Environment, 199, 415–426. https://doi.org/10.1016/j.rse.2017.07.015
- Wang, Q., & Atkinson, P. M. (2018). Spatio-temporal fusion for daily Sentinel-2 images. Remote Sensing of Environment, 204, 31–42. https://doi.org/10.1016/j.rse.2017.10.046
- Wang, X., Xiao, X., Zou, Z., Chen, B., Ma, J., Dong, J., Doughty, R. B., Zhong, Q., Qin, Y., Dai, S., Li, X., Zhao, B., & Li, B. (2020). Tracking annual changes of coastal tidal flats in China during 1986–2016 through analyses of Landsat images with Google Earth Engine. Remote Sensing of Environment, 238, 110987. https://doi.org/10.1016/j.rse.2018.11.030
- Wei, W., Tang, Z., Dai, Z., Lin, Y., Ge, Z., & Gao, J. (2015). Variations in tidal flats of the Changjiang (Yangtze) estuary during 1950s–2010s: Future crisis and policy implication. Ocean and Coastal Management, 108, 89–96. https://doi.org/10.1016/j.ocecoaman.2014.05.018
- Wu, T. W., Zhang, H., Peng, W., Lü, F., & He, P. J. (2023). Applications of convolutional neural networks for intelligent waste identification and recycling: A review. Resources, Conservation and Recycling, 190, 106813. https://doi.org/10.1016/j.resconrec.2022.106813
- Yang, B., Gao, X., Zhao, J., Xie, L., Liu, Y., Lv, X., & Xing, Q. (2022). The impacts of intensive scallop farming on dissolved organic matter in the coastal waters adjacent to the Yangma Island, North Yellow Sea. The Science of the Total Environment, 807, 150989. https://doi.org/10.1016/j.scitotenv.2021.150989
- Yao, H. (2013). Characterizing landuse changes in 1990–2010 in the coastal zone of Nantong, Jiangsu province, China. Ocean and Coastal Management, 71, 108–115. https://doi.org/10.1016/j.ocecoaman.2012.09.007
- Zhang, K., Dong, X., Liu, Z., Gao, W., Hu, Z., & Wu, G. (2019). Mapping tidal flats with Landsat 8 images and Google Earth Engine: A case study of the China’s Eastern Coastal Zone circa 2015. Remote Sensing, 11(8), 924. https://doi.org/10.3390/rs11080924
- Zhang, Z., Xu, N., Li, Y., & Li, Y. (2022). Sub-continental-scale mapping of tidal wetland composition for East Asia: A novel algorithm integrating satellite tide-level and phenological features. Remote Sensing of Environment, 269, 112799. https://doi.org/10.1016/j.rse.2021.112799
- Zhao, B., Liu, Y., Wang, L., Liu, Y., Sun, C., & Fagherazzi, S. (2022). Stability evaluation of tidal flats based on time-series satellite images: A case study of the Jiangsu central coast, China. Estuarine, Coastal and Shelf Science, 264, 107697. https://doi.org/10.1016/j.ecss.2021.107697
- Zhao, C., Jia, M., Wang, Z., Mao, D., & Wang, Y. (2023). Toward a better understanding of coastal salt marsh mapping: A case from China using dual-temporal images. Remote Sensing of Environment, 295, 113664. https://doi.org/10.1016/j.rse.2023.113664
- Zhao, C., Qin, C. Z., & Teng, J. (2020). Mapping large-area tidal flats without the dependence on tidal elevations: A case study of Southern China. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 256–270. https://doi.org/10.1016/j.isprsjprs.2019.11.022
- Zhou, B., Zhu, R., Zhang, Y., & Cheng, L. (2013). An efficient data fingerprint query algorithm based on two-leveled bloom filter. Journal of Multimedia, 8(2), 73-81. https://doi.org/10.4304/jmm.8.2.73–81