Have a personal or library account? Click to login
Digitization as one of the methods of assessing the number and distribution of small water bodies Cover

Digitization as one of the methods of assessing the number and distribution of small water bodies

Open Access
|Jun 2025

References

  1. Altenfelder, S., Raabe, U., & Albrecht, A. (2014). Effects of water regime and agricultural use on diversity and species composition of vascular plants inhabiting temporary ponds in northeastern Germany. Tuexenia, 34(1), 193–210. https://doi.org/10.14471/2014.34.013
  2. Bajkiewicz-Grabowska, E., Golus, W., Markowski, M., & Kwidzińska, M. (2020). Characteristics of the water network in postglacial areas of Northern Poland. In K. Korzeniewska & M. Harnisz (Eds.), Polish river basins and lakes: Part 1, Hydrology and hydrochemistry (pp. 159–174), Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-12123-5_8
  3. Bartout, P., Touchart, L., Terasmaa, J., Choffel, Q., Marzecova, A., Koff, T., Kapanen, G., Qsair, Z., Maleval, V., Millot, C., Saudubray, J., & Al Domany, M. (2015). A new approach to inventorying bodies of water from local to a global scale. Die Erde; Zeitschrift der Gesellschaft für Erdkunde zu Berlin, 146(4), 245–258. https://doi.org/10.12854/erde-146-20
  4. Basińska, A., Kuczyńska-Kippen, N., & Świdnicki, K. (2010). The body size distribution of Filinia longiseta (Ehrenberg) in different types of small water bodies in the Wielkopolska region. Limnetica, 29(1), 171–182. https://doi.org/10.23818/limn.29.14
  5. Batzer, D. P., & Wissinger, S. A. (1996). Ecology of insect communities in nontidal wetlands. Annual Review of Entomology(1), 41, 75–100. https://doi.org/10.1146/annurev.en.41.010196.000451
  6. Bilton, D., McAbendroth, L., Nicolet, P., Bedford, A., Rundle, S., Foggo, A., & Ramsay, P. (2009). Ecology and conservation status of temporary and fluctuating ponds in two areas of southern England. Aquatic Conservation, 19(2), 134–146. https://doi.org/10.1002/aqc.973
  7. Boix, D., Biggs, J., Céréghino, R., Hull, A., Kalettka, T., & Oertli, B. (2012). Pond research and management in Europe: “Small is Beautiful.”. Hydrobiologia, 689(1), 1–9. https://doi.org/10.1007/s10750-012-1015-2
  8. Bosiacka, B., & Pieńkowski, P. (2012). Do biogeographic parameters matter? Plant species richness and distribution of macrophytes in relation to area and isolation of ponds in NW Polish agricultural landscape. Hydrobiologia, 689(1), 79–90. https://doi.org/10.1007/s10750-011-0850-x
  9. Brysiewicz, A., Sługocki, Ł, Wesołowski, P., & Czerniawski, R. (2017). Zooplankton community structure in small ponds in relation to fish community and the environmental factors. Applied Ecology and Environmental Research, 15(4), 929–949. https://doi.org/10.15666/aeer/1504_929941
  10. Cael, B. B., & Seekell, D. A. (2016). The size-distribution of Earth’s lakes. Scientific Reports, 6(1), 1–8. https://doi.org/10.1038/srep29633
  11. Calhoun, A. J. K., Walls, T. E., Stockwell, S. S., & McCollough, M. (2003). Evaluating vernal pools as a basis for conservation strategies: A Maine case study. Wetlands, 23(1), 70–81. https://doi.org/10.1672/0277-5212(2003)023[0070:EVPAAB]2.0.CO;2
  12. Cardoso, C., Ripol, A., Afonso, C., Freire, M., Varela, J., Quental Ferreira, H., Pousão-Ferreira, P., & Bandarra, N. (2017). Fatty acid profiles of the main lipid classes of green seaweeds from fish pond aquaculture. Food Science & Nutrition, 5(6), 1186–1194. https://doi.org/10.1002/fsn3.511
  13. Catalán, N., von Schiller, D., Marcé, R., Koschorreck, M., Gomez-Gener, L., & Biel Obrador, J. (2014). Carbon dioxide efflux during the flooding phase of temporary ponds. Limnetica, 33(2), 349–360. https://doi.org/10.23818/limn.33.27
  14. Céréghino, R., Biggs, J., Oertli, B., & Declerck, S. (2008). The ecology of European ponds: Defining the characteristics of neglected freshwater habitat. Hydrobiologia, 597(1), 1–6. https://doi.org/10.1007/s10750-007-9225-8
  15. Choiński, A. (1999). Oczka wodne w Polsce w strefie zasięgu zlodowacenia bałtyckiego. Acta Universitatis Nicolai Copernici, Geografia, 29(103), 317–326. UMK, Toruń.
  16. Chumchal, M. M., Drenner, R. W., & Adams, K. J. (2016). Abundance and size distribution of permanent and temporary farm ponds in the southeastern Great Plains. Inland Waters, 6(2), 258–264. https://doi.org/10.5268/IW-6.2.954
  17. Coccia, C., Almeida, B. A., Badosa, A., Diniz, L. P., Brendonck, L., Frisch, D., & Green, A. J. (2024). Hydroperiod length, not pond age, determines zooplankton taxonomic and functional diversity in temporary ponds. Ecological Indicators, 159, 111632. https://doi.org/10.1016/j.ecolind.2024.111632
  18. Collinson, N. H., Biggs, J., Corfield, A., Hodson, M. J., Walker, D., Whitfield, M., & Williams, P. J. (1995). Temporary and permanent ponds: An assessment of the effects of drying out on the conservation value of aquatic invertebrate communities. Biological Conservation, 74(2), 125–134. https://doi.org/10.1016/0006-3207(95)00021-U
  19. Cottenie, K., Michels, E., Nuytten, N., & De Meester, L. (2003). Zooplankton metacommunity structure: Regional vs. local processes in highly interconnected ponds. Ecology, 84(4), 991–1000. https://doi.org/10.1890/0012-9658(2003)084[0991:ZMSRVL]2.0.CO;2
  20. Cuenca-Cambronero, M., Blicharska, M., Perrin, J. A., Davidson, T. A., Oertli, B., Lago, M., Beklioglu, M., Meerhoff, M., Arim, M., Teixeira, J., De Meester, L., Biggs, J., Robin, J., Martin, B., Greaves, H. M., Sayer, C. D., Lemmens, P., Boix, D., Mehner, T., … Brucet, S. (2023). Challenges and opportunities in the use of ponds and pondscapes as nature-based solutions. Hydrobiologia, 850(12), 3257–3271. https://doi.org/10.1007/s10750-023-05149-y
  21. Davies, B., Biggs, B., Williams, P., & Maund, S. (2008). Comparative biodiversity of aquatic habitats in the European agricultural landscape. Agriculture. Ecosystems & Environment, 125(1–4), 1–8. https://doi.org/10.1016/j.agee.2007.10.006
  22. Downing, J. A. (2010). The emerging global role of small lakes and ponds: Little things mean a lot. Limnetica, 29(1), 9–24. https://doi.org/10.23818/limn.29.02
  23. Downing, J. A., & Duarte, C. M. (2009). Abundance and size distribution of lakes, ponds, and impoundments. In G. E. Likens (Ed.), Encyclopedia of inland waters (pp. 469–478). Elsevier.
  24. Downing, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J., Striegl, R. G., McDowell, W. H., Kortelainen, P., Caraco, N. F., Melack, J. M., & Middelburg, J. J. (2006). The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography, 51(5), 2388–2397. https://doi.org/10.4319/lo.2006.51.5.2388
  25. Drwal, J., & Lange, W. (1985). Niektóre limnologiczne odrębności oczek. Geneza i rozmieszczenie oczek. Zeszyty Naukowe WBiNoZ Uniwersytetu Gdańskiego, Geografia, 14, 69–83.
  26. Ewald, N., Williams, P., Williamson, B., Dunn, F., & Biggs, J. (2014). Year 3 report DRAFT (p. 19).
  27. Golus, W. (2007). Rozmieszczenie oczek wodnych w zlewni górnej Raduni. Obieg wody w naturalnym i przekształconym środowisku. In R. Bogdanowicz & J. Fac-Beneda (Eds.), Badania hydrograficzne w poznawaniu środowiska (Vol. 8, pp. 19–23). Wydawnictwo UMCS.
  28. Golus, W., & Bajkiewicz-Grabowska, E. (2017). Water circulation in the moraine ponds of northern Poland. Hydrobiologia, 793(1), 55–65. https://doi.org/10.1007/s10750-016-2830-7
  29. Hanson, P. C., Carpenter, S. R., Cardille, J. A., Coe, M. T., & Winslow, L. A. (2007). Small lakes dominate a random sample of regional lake characteristics. Freshwater Biology, 52, 814– 822. https://doi.org/10.1111/j.1365-2427.2007.01730.x
  30. Hassall, C. (2014). The ecology and biodiversity of urban ponds. Wiley Interdisciplinary Reviews: Water, 1(3), 187–206. https://doi.org/10.1002/wat2.1014
  31. Hill, M. J., Biggs, J., Thornhill, I., Briers, R. A., Gledhill, D. G., White, J. C., Wood, P. J., & Hassall, C. (2017). Urban ponds as an aquatic biodiversity resource in modified landscapes. Global Change Biology, 23(3), 986–999. https://doi.org/10.1111/gcb.13401
  32. Hill, M. J., Greaves, H. M., Sayer, C. D., Hassall, C., Milin, M., Milner, V. S., Marazzi, L., Hall, R., Harper, L. R., Thornhill, I., Walton, R., Biggs, J., Ewald, N., Law, A., Willby, N., White, J. C., Briers, R. A., Mathers, K. L., Jeffries, M. J., & Wood, P. J. (2021). Pond ecology and conservation: Research priorities and knowledge gaps. Ecosphere, 12(12), e03853. https://doi.org/10.1002/ecs2.3853
  33. Huang, C., Chen, Y., Zhang, S., & Wu, J. (2018). Detecting, extracting, and monitoring surface water from space using optical sensors: A review. Reviews of Geophysics, 56, 333–360. https://doi.org/10.1029/2018RG000598
  34. Jeffries, M. J. (2016). Flood, drought, and the inter-annual variation to the number and size of ponds and small wetlands in an English lowland landscape over three years of weather extremes. Hydrobiologia, 768(1), 255–272. https://doi.org/10.1007/s10750-015-2554-0
  35. Kalettka, T., & Rudat, C. (2006). Hydrogeomorphic types of glacially created kettle holes in North-East Germany. Limnologica, 36(1), 54–64. https://doi.org/10.1016/j. limno.2005.11.001
  36. Kalettka, T., Rudat, C., & Quast, J. (2001). “Potholes” in Northeast German agro-landscapes: Functions, land-use impacts, and protection strategies. In J. D. Tenhunen, R. Lenz, & R. Hantschel (Eds.), Ecosystem approaches to landscape management in Central Europe (Vol. 147, pp. 291–298). Springer.
  37. Kalniet, A. (1952). Zagadnienie genezy i wieku tzw. Oczek lodowcowych. Wiadomości Muzeum Ziemi, 6(2), 339–355.
  38. Lehner, B., & Döll, P. (2004). Development and validation of a global database of lakes, water bodies, and wetlands. Journal of Hydrology, 296, 1–22. https://doi.org/10.1016/j. jhydrol.2004.03.028
  39. Lewis-Phillips, J., Brooks, S. J., Sayer, C. D., Patmore, I. R., Hilton, G. M., Harrison, A., Robson, H., & Axmacher, J. C. (2020). Ponds as insect chimneys: Restoring overgrown farmland ponds benefits birds through elevated productivity of emerging aquatic insects. Biological Conservation, 241, 108253. https://doi.org/10.1016/j.biocon.2019.108253
  40. Mai, A., & Bill, R. (2011). Analysing kettle holes in Mecklenburg in the last 225 years using an interdisciplinary virtual research laboratory. EnviroInfo 2011: Innovations in Sharing Environmental Observations and Information.
  41. Marcé, R., Obrador, B., Gómez-Gener, L., Catalán, N., Koschorreck, M., Arce, M. I., Singer, G., & von Schiller, D. (2019). Emissions from dry inland waters are a blind spot in the global carbon cycle. Earth-Science Reviews, 188, 240–248. https://doi.org/10.1016/j.earscirev.2018.11.012
  42. Marszelewski, W., & Podgórski, P. (2004). Zmiany ilościowe oczek i jezior na Pojezierzu Chełmińskim w świetle materiałów kartograficznych z XIX i XX wieku. Przegląd Geograficzny, 76, 33–50.
  43. Mętrak, M., Pawlikowski, P., & Suska-Malawska, M. (2014). Age and land use as factors differentiating hydrochemistry and plant cover of astatic ponds in the post-agricultural landscape. Journal of Water and Land Development, 21(IV–VI), 29–37. https://doi.org/10.2478/jwld-2014-0011
  44. Meybeck, M. (1995). Global lake distribution. In A. Lerman, D. M. Imboden, & J. R. Gat (Eds.), Physics and chemistry of lakes (pp. 1–35).
  45. Minns, C. K., Moore, J. E., Shuter, B. J., & Mandrak, N. E. (2008). A preliminary national analysis of some key characteristics of Canadian lakes. Canadian Journal of Fisheries and Aquatic Sciences, 65(8), 1763–1778. https://doi.org/10.1139/F08-110
  46. Nagengast, B., & Kuczyńska-Kippen, N. (2014). The effect of human impact on the vegetation of small water bodies in an agricultural landscape. Teka Kom. Ochr. Kszt. Rod. Przyr. – OL PAN, 10, 274–283.
  47. Obrador, B., von Schiller, D., Marcé, R., Gómez-Gener, L., Koschorreck, M., Borrego, C., & Catalán, N. (2018). Dry habitats sustain high CO2 emissions from temporary ponds across seasons. Scientific Reports, 8(1), 3015. https://doi.org/10.1038/s41598-018-20969-y
  48. Oertli, B., Joye, D. A., Castella, E., Juge, D., Cambin, D., & Lachavanne, J. B. (2002). Does size matter? The relationship between pond area and biodiversity. Biological Conservation, 104, 59–70. https://doi.org/10.1016/S0006-3207(01)00154-9
  49. Onandia, G., Lischeid, G., Kalettka, T., Kleeberg, A., Omari, M., Premke, K., & Arhonditsis, G. B. (2018). Biogeochemistry of natural ponds in agricultural landscape: Lessons learned from modeling a kettle hole in Northeast Germany. Science of the Total Environment, 634, 1615–1630. https://doi.org/10.1016/j.scitotenv.2018.04.014
  50. Pätzig, M., & Düker, E. (2021). Dynamics of dominant plant communities in Kettle Holes (Northeast Germany) during a five-year period of extreme weather conditions. Water, 13(5), 688. https://doi.org/10.3390/w13050688
  51. Pieńkowski, P. (2003). Disappearance of the mid-field ponds as a result of agriculture intensification. Electronic Journal of Polish Agricultural Universities, 6(2) [online].
  52. Pieńkowski, P. (2004). The disappearance of ponds in the landscape of Northern Europe as an effect of anthropogenic influence and global climate change. Polish Journal of Environmental Studies, 13, 192–196.
  53. Pi, X., Luo, Q., Feng, L., Xu, Y., Tang, J., Liang, X., Ma, E., Cheng, R., Fensholt, R., Brandt, M., Cai, X., Gibson, L., Liu, J., Zheng, C., Li, W., & Bryan, B. A. (2022). Mapping global lake dynamics reveals the emerging roles of small lakes. Nature Communications, 13(1), 6337. https://doi.org/10.1038/s41467-022-34140-9
  54. PPWK – Polish State Enterprise for Cartographic Publishing (1965–1980). Topographic maps of Poland, scale 1:25,000, 1965 coordinate system, various sheets. Warsaw.
  55. Premke, K., Attermeyer, K., & Augustin, J., et al. (2016). The importance of landscape complexity for carbon fluxes on the landscape level: Small-scale heterogeneity matters. Wiley Interdisciplinary Reviews: Water, 3(4), 601–617. https://doi.org/10.1002/wat2.1147
  56. Riley, W. D., Potter, E. C. E., Biggs, J., Collins, A. L., Jarvie, H. P., Jones, J. I., Kelly-Quinn, M., Ormerod, S. J., Sear, D. A., Wilby, R. L., Broadmeadow, S., Brown, C. D., Chanin, P., Copp, G. H., Cowx, I. G., Grogan, A., Hornby, D. D., Huggett, D., Kelly, M. G., … Newman, J. R. (2018). Small water bodies in Great Britain and Ireland: Ecosystem function, human-generated degradation, and options for restorative action. Science of the Total Environment, 645, 1598–1616. https://doi.org/10.1016/j.scitotenv.2018.07.243
  57. Robotham, J., Old, G., Rameshwaran, P., Sear, D., Gasca-Tucker, D., Bishop, J., Old, J., & McKnight, D. (2021). Sediment and nutrient retention in ponds on an agricultural stream: Evaluating effectiveness for diffuse pollution mitigation. Water, 13(12), 1640. https://doi.org/10.3390/w13121640
  58. Sebastián-González, E., Sánchez-Zapata, J. A., & Botella, F. (2010). Agricultural ponds as alternative habitat for waterbirds: Spatial and temporal patterns of abundance and management strategies. European Journal of Wildlife Resources, 56(1), 11–20. http://dx.doi.org/10.1007/s10344-009-0288-x
  59. Seekel, D. A., Pace, M. L., Tranvik, L. J., & Verpoorter, C. (2013). A fractal-based approach to lake size distribution. Geophysical Research Letters, 40, 517–521. https://doi.org/10.1002/grl.50139
  60. Shiklomanov, I. (1993). World water resources. In P. Gleick (Ed.), Water in crisis (pp. 13–24). Oxford University Press.
  61. Solon, J. (Ed.). (2018). Geografia Polski. Mezoregiony fizyczno-geograficzne [Geography of Poland. Physical-geographical mesoregions]. Wydawnictwo Naukowe PWN.
  62. Thiere, G., Milenkovski, S., Lindgren, P. E., Sahlén, G., Berglund, O., & Weisner, S. E. (2009). Wetland creation in agricultural landscapes: Biodiversity benefits on local and regional scales. Biological Conservation, 142(5), 964–973. https://doi.org/10.1016/j.biocon.2009.01.006
  63. Thornhill, I., Batty, L., Death, R. G., Friberg, N. R., & Ledger, M. E. (2017). Local and landscape scale determinants of macroinvertebrate assemblages and their conservation value in ponds across an urban land-use gradient. Biodiversity and Conservation, 26(6), 1065–1086. https://doi.org/10.1007/s10531-016-1286-4
  64. Verpoorter, C., Kutser, T., Seekel, D. A., & Tranvik, L. J. (2014). A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters, 41, 6396–6402. https://doi.org/10.1002/2014GL060641
  65. Ziernicka-Wojtaszek, A., & Kopcińska, J. (2020). Variation in atmospheric precipitation in Poland in the years 2001– 2018. Atmosphere, 11(8), 794. https://doi.org/10.3390/atmos11080794
DOI: https://doi.org/10.26881/oahs-2025.1.10 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 109 - 123
Submitted on: Mar 31, 2025
Accepted on: May 19, 2025
Published on: Jun 30, 2025
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Włodzimierz Golus, Maciej Markowski, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.