Have a personal or library account? Click to login
Driving factors affecting zooplankton functional groups in a shallow eutrophic lake Cover

Driving factors affecting zooplankton functional groups in a shallow eutrophic lake

Open Access
|Dec 2024

References

  1. Anderson, D. M., Glibert, P. M., & Burkholder, J. M. (2002). Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries, 25, 704–726. https://doi.org/10.1007/BF02804901
  2. APHA. (1992). Standard Methods for the Examination of Waters and Wastewaters (18th ed.). American Public Health Association.
  3. Barnett, A. J., Finlay, K., & Beisner, B. E. (2007). Functional diversity of crustacean zooplankton communities: Towards a trait-based classification. Freshwater Biology, 52(5), 796– 813. https://doi.org/10.1111/j.1365-2427.2007.01733.x
  4. Bennett, E. M., Carpenter, S. R., & Caraco, N. F. (2001). Human impact on erodable phosphorus and eutrophication: A global perspective: Increasing accumulation of phosphorus in soil threatens rivers, lakes, and coastal oceans with eutrophication. Bioscience, 51(3), 227–234. https://doi.org/10.1641/0006-3568(2001)051[0227:HIOEP A]2.0.CO;2
  5. Błędzki, L. A., & Rybak, J. I. (2016). Freshwater Crustacean Zooplankton of Europe: Cladocera & Copepoda (Calanoida, Cyclopoida). Key to Species Identification, with Notes on Ecology, Distribution, Methods and Introduction to Data Analysis. Springer International Publishing. https://doi.org/10.1007/978-3-319-29871-9
  6. Bogdan, K. G., & Gilbert, J. J. (1984). Body size and food size in freshwater zooplankton. Proceedings of the National Academy of Sciences of the United States of America, 81(20), 6427–6431.
  7. Bottrell, H. H., Duncan, A., Gliwicz, Z., Grygierek, E., Herzig, A., Hilbricht-Ilkowska, A., Kurasawa, H., Larsson, P., & Weglenska, T. (1976). Review of some problems in zooplankton production studies. Norwegian Journal of Zoology, 21, 477–483.
  8. Bradshaw, E. G., Rasmussen, P., & Odgaard, B. V. (2005). Mid-to late-Holocene land-use change and lake development at Dallund S0, Denmark: Synthesis of multiproxy data, linking land and lake. The Holocene, 15(8), 1152–1162. https://doi.org/10.1191/0959683605hl887rp
  9. Brooks, J. L., & Dodson, S. I. (1965). Predation, body size, and composition of plankton. Science, 150(3692), 28–35. https://doi.org/10.1126/science.150.3692.28 PMID:17829740
  10. Carlson, R. E. (1977). A trophic state index for lakes 1. Limnology and Oceanography, 22(2), 361–369. https://doi.org/10.4319/lo.1977.22.2.0361
  11. Chislock, M. F., Doster, E., Zitomer, R. A., & Wilson, A. E. (2013). Eutrophication: Causes, consequences, and controls in aquatic ecosystems. Nature Education Knowledge, 4(4), 10.
  12. Dorak, Z., Köker, L., Gürevin, C., & Saç, G. (2023). How do environmental variables affect the temporal dynamics of zooplankton functional groups in a hyper-eutrophic wetland? Environmental Science and Pollution Research International, 30(43), 97115–97127. https://doi.org/10.1007/s11356-023-29252-8 PMID:37587395
  13. Dumont, H. J., Van de Velde, I., & Dumont, S. (1975). The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia, 19(1), 75–97. https://doi.org/10.1007/BF00377592 PMID:28308833
  14. Duré, G. A. V., Simões, N. R., Braghin, L. D. S. M., & Ribeiro, S. M. M. S. (2021). Effect of eutrophication on the functional diversity of zooplankton in shallow ponds in Northeast Brazil. Journal of Plankton Research, 43(6), 894–907. https://doi.org/10.1093/plankt/fbab064
  15. Dussart, B. H., & Defaye, D. (2001). Introduction to the Copepoda. Backhuys, Winschoten.
  16. Ejsmont-Karabin, J. (1998). Empirical equations for biomass calculation of planktonic rotifers. Polskie Archiwum Hydrobiologii. Polskie Archiwum Hydrobiologii, 45(4), 513– 522.
  17. Evrendilek, F., Berberoglu, S., Karakaya, N., Cilek, A., Aslan, G., & Gungor, K. (2011). Historical spatiotemporal analysis of land-use/land-cover changes and carbon budget in a temperate peatland (Turkey) using remotely sensed data. Applied Geography (Sevenoaks, England), 31(3), 1166–1172. https://doi.org/10.1016/j.apgeog.2011.03.007
  18. Fintelman-Oliveira, E., Kruk, C., Lacerot, G., Klippel, G., & Branco, C. W. C. (2023). Zooplankton functional groups in tropical reservoirs: Discriminating traits and environmental drivers. Hydrobiologia, 850(2), 365–384. https://doi.org/10.1007/s10750-022-05074-6
  19. Ger, K. A., Hansson, L. A., & Lürling, M. (2014). Understanding cyanobacteria-zooplankton interactions in a more eutrophic world. Freshwater Biology, 59(9), 1783–1798. https://doi.org/10.1111/fwb.12393
  20. Gilbert, J. J. (2022). Food niches of planktonic rotifers: Diversification and implications. Limnology and Oceanography, 67(10), 2218–2251. https://doi.org/10.1002/lno.12199
  21. Gilbert, J. J., & Durand, M. W. (1990). Effect of Anabaena flos‐ aquae on the abilities of Daphnia and Keratella to feed and reproduce on unicellular algae. Freshwater Biology, 24(3), 577–596. https://doi.org/10.1111/j.1365-2427.1990.tb00734.x
  22. Gliwicz, Z. M. (1990). Food thresholds and body size in cladocerans. Nature, 343(6259), 638–640. https://doi.org/10.1038/343638a0
  23. Gliwicz, Z. M., & Lampert, W. (1990). Food thresholds in Daphnia species in the absence and presence of blue-green filaments. Ecology, 71(2), 691–702. https://doi.org/10.2307/1940323
  24. Goździejewska, A. M., Koszałka, J., Tandyrak, R., Grochowska, J., & Parszuto, K. (2021). Functional responses of zooplankton communities to depth, trophic status, and ion content in mine pit lakes. Hydrobiologia, 848(11), 2699–2719. https://doi.org/10.1007/s10750-021-04590-1
  25. Gulati, R. D. (1990). Structural and grazing responses of zooplankton community to biomanipulation of some Dutch water bodies. Hydrobiologia, 200/201, 99–118. https://doi.org/10.1007/BF02530332
  26. Hairston, N. G., Jr., & Hairston, N. G., Sr. (1993). Cause-effect relationships in energy flow, trophic structure, and interspecific interactions. American Naturalist, 142(3), 379– 411. https://doi.org/10.1086/285546
  27. Hanazato, T. (2001). Pesticide effects on freshwater zooplankton: An ecological perspective. Environmental Pollution, 112(1), 1–10. https://doi.org/10.1016/S0269-7491(00)00110-X PMID:11202648
  28. Haney, J. F. (1987). Field studies on zooplankton‐cyanobacteria interactions. New Zealand Journal of Marine and Freshwater Research, 21(3), 467–475. https://doi.org/10.1080/00288330.1987.9516242
  29. Hébert, M. P., Beisner, B. E., & Maranger, R. (2016). A meta-analysis of zooplankton functional traits influencing ecosystem function. Ecology, 97(4), 1069–1080. https://doi.org/10.1890/15-1084.1 PMID:27220222
  30. Henrikson, L., Nyman, H. G., Oscarson, H. G., & Stenson, J. A. (1980). Trophic changes, without changes in the external nutrient loading. Hydrobiologia, 68(3), 257–263. https://doi.org/10.1007/BF00018835
  31. Hurst, T. P. (2007). Causes and consequences of winter mortality in fishes. Journal of Fish Biology, 71(2), 315–345. https://doi.org/10.1111/j.1095-8649.2007.01596.x
  32. Jeppesen, E., Kronvang, B., Olesen, J. E., Audet, J., Søndergaard, M., Hoffmann, C. C., Andersen, H. E., Lauridsen, T. L., Liboriussen, L., Larsen, S. E., Beklioglu, M., Meerhoff, M., Özen, A., & Özkan, K. (2011). Climate change effects on nitrogen loading from cultivated catchments in Europe: Implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia, 663(1), 1–21. https://doi.org/10.1007/s10750-010-0547-6
  33. John, E. H., Batten, S. D., Harris, R. P., & Hays, G. C. (2001). Comparison between zooplankton data collected by the Continuous Plankton Recorder survey in the English Channel and by WP-2 nets at station L4, Plymouth (UK). Journal of Sea Research, 46(3-4), 223–232. https://doi.org/10.1016/S1385-1101(01)00085-5
  34. Jongman, R. G. H., Braak, C. J. F., & Tongeren, O. F. R. (1995). Data Analysis in Community and Landscape Ecology. Cambridge University Press. https://doi.org/10.1017/CBO9780511525575
  35. Karabin, A. (1985). Pelagic zooplankton (Rotatoria + Cladocera) variation in the process of lake eutrophication. I. Structural and quantitative features. Ekologia Polska, 33, 567–616.
  36. Kılınç, S. (2003). The phytoplankton community of Yeniçaga Lake (Bolu, Turkey). Nova Hedwigia, 76(3-4), 429–442. https://doi.org/10.1127/0029-5035/2003/0076-0429
  37. Kirk, K. L., & Gilbert, J. J. (1992). Variation in herbivore response to chemical defenses: Zooplankton foraging on toxic cyanobacteria. Ecology, 73(6), 2208–2217. https://doi.org/10.2307/1941468
  38. Koste, W. (1978). Rotatoria, die Rädertiere Mitteleuropas (2nd ed.). Gebruder Borntraeger.
  39. Krztoń, W., & Kosiba, J. (2020). Variations in zooplankton functional groups density in freshwater ecosystems exposed to cyanobacterial blooms. The Science of the Total Environment, 730, 139044. https://doi.org/10.1016/j.scitotenv.2020.139044 PMID:32402967
  40. Lair, N. (1992). Daytime grazing and assimilation rates of planktonic copepods Acanthodiaptomus denticornis and Cyclops vicinus vicinus. Comparison of spatial and resource utilisation by rotifers and cladoceran communities in a eutrophic lake. Hydrobiologia, 231, 107–117. https://doi.org/10.1007/BF00006503
  41. Lampert, W. (1987). Laboratory studies on zooplanktoncyanobacteria interactions. New Zealand Journal of Marine and Freshwater Research, 21(3), 483–490. https://doi.org/10.1080/00288330.1987.9516244
  42. Lewis, W. M., Jr., & Wurtsbaugh, W. A. (2008). Control of lacustrine phytoplankton by nutrients: Erosion of the phosphorus paradigm. International Review of Hydrobiology, 93(4-5), 446–465. https://doi.org/10.1002/iroh.200811065
  43. Litchman, E., Ohman, M. D., & Kiørboe, T. (2013). Trait-based approaches to zooplankton communities. Journal of Plankton Research, 35(3), 473–484. https://doi.org/10.1093/plankt/fbt019
  44. Lürling, M., & Van Donk, E. (1997). Morphological changes in Scenedesmus induced by infochemicals released in situ from zooplankton grazers. Limnology and Oceanography, 42(4), 783–788. https://doi.org/10.4319/lo.1997.42.4.0783
  45. Ma, C., Mwagona, P. C., Yu, H., Sun, X., Liang, L., Mahboob, S., & Al-Ghanim, K. A. (2019). Seasonal dynamics of zooplankton functional group and its relationship with physico-chemical variables in high turbid nutrient-rich Small Xingkai Wetland Lake, Northeast China. Journal of Freshwater Ecology, 34(1), 65–79. https://doi.org/10.1080/02705060.2018.1443847
  46. Makino, W., & Ban, S. (1998). Diel changes in vertical overlap between Cyclops strenuus (Copepoda; Cyclopoida) and its prey in oligotrophic Lake Toya, Hokkaido, Japan. Journal of Marine Systems, 15(1-4), 139–148. https://doi.org/10.1016/S0924-7963(97)00073-0
  47. Marker, A. F. H. (1994). Chlorophyll a SCA method revision (1st ed.). National Rivers Authority.
  48. May, L., Bailey-Watts, A., & Kirika, A. (2001). The relationship between Trichocerca pusilla (Jennings), Aulacoseira spp. and water temperature in Loch Leven, Scotland, UK. Hydrobiologia, 446/447, 29–34. https://doi.org/10.1023/A:1017508719110
  49. McCauley, E., & Kalff, J. (1981). Empirical relationships between phytoplankton and zooplankton biomass in lakes. Canadian Journal of Fisheries and Aquatic Sciences, 38(4), 458–463. https://doi.org/10.1139/f81-063
  50. Negrea, S. (1983). Cladocera. In Fauna R.S. Romania, Academiei Bucuresti, 4(12), 399.
  51. Obertegger, U., Smith, H. A., Flaim, G., & Wallace, R. L. (2011). Using the guild ratio to characterize pelagic rotifer communities. Hydrobiologia, 662(1), 157–162. https://doi.org/10.1007/s10750-010-0491-5
  52. Ochocka, A., & Pasztaleniec, A. (2016). Sensitivity of plankton indices to lake trophic conditions. Environmental Monitoring and Assessment, 188(11), 1–16. https://doi.org/10.1007/s10661-016-5634-3 PMID:27752916
  53. Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O’Hara, R., Solymos, P., Stevens, M., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M., Lahti, L., McGlinn, D., Ouellette, M., Ribeiro Cunha, E., Smith, T., Stier, A., Ter Braak, C., & Weedon, J. (2024). Vegan: Community Ecology Package. R package version 2.6-7 [computer software].
  54. Paturej, E., Gutkowska, A., Koszalka, J., & Bowszys, M. (2017). Effect of physicochemical parameters on zooplankton in the brackish, coastal Vistula Lagoon. Oceanologia, 59(1), 49–56. https://doi.org/10.1016/j.oceano.2016.08.001
  55. Phillips, G., Pietiläinen, O. P., Carvalho, L., Solimini, A., Lyche Solheim, A., & Cardoso, A. C. (2008). Chlorophyll–nutrient relationships of different lake types using a large European dataset. Aquatic Ecology, 42(2), 213–226. https://doi.org/10.1007/s10452-008-9180-0
  56. Pomerleau, C., Sastri, A. R., & Beisner, B. E. (2015). Evaluation of functional trait diversity for marine zooplankton communities in the Northeast subarctic Pacific Ocean. Journal of Plankton Research, 37(4), 712–726. https://doi.org/10.1093/plankt/fbv045
  57. Prairie, Y. T., Duarte, C. M., & Kalff, J. (1989). Unifying nutrient– chlorophyll relationships in lakes. Canadian Journal of Fisheries and Aquatic Sciences, 46(7), 1176–1182. https://doi.org/10.1139/f89-153
  58. Sakamoto, M. (1966). Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Archiv für Hydrobiologie, 62, 1–28.
  59. Saygı Başbuğ, Y. (2005). Seasonal succession and distribution of zooplankton in Yeniçağa Lake in Northwestern Turkey. Zoology in the Middle East, 34(1), 93–100. https://doi.org/10.1080/09397140.2005.10638088
  60. Saygı, Y. (2023). Yeniçağa Gölündeki (Bolu) Zooplankton Biyokütlesinin Zamana Bağlı Değişimi. Hacettepe University Scientific Research Project Commission, Ankara, Turkey (Report No. 19615).
  61. Saygı, Y., & Demirkalp, F. Y. (2004). Trophic status of shallow Yeniçağa Lake (Bolu, Turkey) in relation to physical and chemical environment. Fresenius Environmental Bulletin, 13(5), 385–393.
  62. Saygı, Y., & Yiğit, S. (2005). Rotifera community structure of Lake Yeniçağa, Turkey. Journal of Freshwater Ecology, 20(1), 197–199. https://doi.org/10.1080/02705060.2005.9664954
  63. Saygı, Y., & Yiğit, S. A. (2012). Heavy metals in Yeniçağa Lake and its potential sources: Soil, water, sediment, and plankton. Environmental Monitoring and Assessment, 184(3), 1379–1389. https://doi.org/10.1007/s10661-011-2048-0 PMID:21494824
  64. Schindler, D. W. (1977). Evolution of phosphorus limitation in lakes. Science, 195(4275), 260–262. https://doi.org/10.1126/science.195.4275.260 PMID:17787798
  65. Schindler, D. W., Hecky, R. E., Findlay, D. L., Stainton, M. P., Parker, B. R., Paterson, M. J., Beaty, K. G., Lyng, M., & Kasian, S. E. M. (2008). Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences of the United States of America, 105(32), 11254–11258. https://doi.org/10.1073/pnas.0805108105 PMID:18667696
  66. Smith, V. H. (1982). The nitrogen and phosphorus dependence of algal biomass in lakes: An empirical and theoretical analysis. Limnology and Oceanography, 27(6), 1101–1111. https://doi.org/10.4319/lo.1982.27.6.1101
  67. Sommer, U., Sommer, F., Santer, B., Jamieson, C., Boersma, M., Becker, C., & Hansen, T. (2001). Complementary impact of copepods and cladocerans on phytoplankton. Ecology Letters, 4(6), 545–550. https://doi.org/10.1046/j.1461-0248.2001.00263.x
  68. Søndergaard, M., & Jeppesen, E. (2007). Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. Journal of Applied Ecology, 44(6), 1089–1094. https://doi.org/10.1111/j.1365-2664.2007.01426.x
  69. Stemberger, R. S. (1979). A guide to the rotifers of the Laurentian Great Lakes. Environmental Monitoring and Support Laboratory.
  70. Sun, S., Huo, Y., & Yang, B. (2010). Zooplankton functional groups on the continental shelf of the yellow sea. Deep-sea Research. Part II, Topical Studies in Oceanography, 57(11-12), 1006–1016. https://doi.org/10.1016/j.dsr2.2010.02.002
  71. Tavsanoglu, U. N., & Akbulut, N. E. (2019). Seasonal dynamics of riverine zooplankton functional groups in Turkey: Kocaçay Delta as a case study. Turkish Journal of Fisheries and Aquatic Sciences, 20(1), 69–77. https://doi.org/10.4194/1303-2712-v20_1_07
  72. Telesh, I., Postel, L., Heerkloss, R., Mironova, E., & Skarlato, S. (2009). Zooplankton of the Open Baltic Sea: Extended Atlas. Meereswissenschaftliche Berichte.
  73. Tõnno, I., Agasild, H., Kõiv, T., Freiberg, R., Nõges, P., & Nõges, T. (2016). Algal diet of small-bodied crustacean zooplankton in a cyanobacteria-dominated eutrophic lake. PLoS One, 11(4), e0154526. https://doi.org/10.1371/journal.pone.0154526 PMID:27124652
  74. Vrede, T., Ballantyne, A., Mille-Lindblom, C., Algesten, G., Gudasz, C., Lindahl, S., & Brunberg, A. K. (2009). Effects of N:P loading ratios on phytoplankton community composition, primary production and N fixation in a eutrophic lake. Freshwater Biology, 54(2), 331–344. https://doi.org/10.1111/j.1365-2427.2008.02118.x
  75. Wang, H., Huo, T., Du, X., Wang, L., Song, D., Huang, X., & Zhao, C. (2022). Zooplankton community and its environmental driving factors in Ulungur Lake, China. Journal of Freshwater Ecology, 37(1), 387–403. https://doi.org/10.1080/02705060.2022.2093279
  76. Wen, X., Zhai, P., Feng, R., Yang, R., & Xi, Y. (2017). Comparative analysis of the spatio-temporal dynamics of rotifer community structure based on taxonomic indices and functional groups in two subtropical lakes. Scientific Reports, 7(1), 578. https://doi.org/10.1038/s41598-017-00666-y PMID:28373702
  77. Wright, D. I., & Shapiro, J. (1984). Nutrient reduction by biomanipulation: An unexpected phenomenon and its possible cause. Internationale Vereinigung für theoretische und angewandte Limnologie. Verhandlungen - Internationale Vereinigung für Theoretische und Angewandte Limnologie, 22(1), 518–524. https://doi.org/10.1080/03680770.1983.11897338
  78. Yin, X. W., Liu, P. F., Zhu, S. S., & Chen, X. X. (2010). Food selectivity of the herbivore Daphnia magna (Cladocera) and its impact on competition outcome between two freshwater green algae. Hydrobiologia, 655(1), 15–23. https://doi.org/10.1007/s10750-010-0399-0
  79. Zar, J. H. (2010). Biostatistical analysis. Prentice-Hall.
  80. Zengin, M., İlhan, S., Küçükkara, R., Güler, M., & Oktay, Ç. (2021). An evaluation of fisheries management on the Lake Yeniçağa, Bolu, Turkey. Acta Aquatica Turcica, 17(4), 489-504. (In Turkish). https://doi.org/10.22392/actaquatr.867466
  81. Zhao, F., Yu, H. X., Ma, C. X., Sun, X., Liu, D., Shang, L. D., Liu, J. M., Li, X. Y., Li, S., Li, X. C., Li, T. Y., Yu, Shabani, I. E., Wang, Y. Z., Su, L. J., Zhang, L. M., Mu, Y. Y., Xiao, L., Tian, Z., Pan, C., Sun, B., Pan, H. F., Shang, G. Y. Q., Chai, Y., Meng, Y. (2020). Characteristics of zooplankton functional groups and their environmental factors in the Harbin Section of the Songhua River. China. Applied Ecology and Environmental Research, 18(5), 7457–7471. https://doi.org/10.15666/aeer/1805_74577471
DOI: https://doi.org/10.26881/oahs-2024.4.07 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 396 - 409
Submitted on: May 14, 2024
Accepted on: Jul 23, 2024
Published on: Dec 21, 2024
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Bura Uğur Sorguç, Fatma Yıldız Demirkalp, Yasemin Saygı, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.