References
- Angelstein, S., Wolfram, C., Rann, K., Kiwel, U., Frimel, S., Merbach, I., & Schubert, H. (2009). The influence of different sediment nutrient contents on growth and competition of Elodea nuttallii and Myriophyllum spicatum in nutrient-poor waters. Fundamental and Applied Limnology, 175(1), 49–57. https://doi.org/10.1127/1863-9135/2009/0175-0049
- Baattrup-Pedersen, A., Larsen, S. E., & Riis, T. (2002). Long-term effects of stream management on plant communities in two Danish lowland streams. Hydrobiologia, 481(1), 33–45. https://doi.org/10.1023/A:1021296519187
- Baethgen, W. E., & Alley, M. M. (1989). A manual colorimetric procedure for measuring ammonium nitrogen in soil and plant kjeldahl digests. Communications in Soil Science and Plant Analysis, 20(9–10), 961–969. https://doi.org/10.1080/00103628909368129
- Benkaddour, B. (2018). Contribution à l ’ étude de la contamination des eaux et des sédiments. In These De Doctorat.
- Bini, L. M., Thomaz, S. M., Murphy, K. J., & Camargo, A. F. M. (1999). Aquatic macrophyte distribution in relation to water and sediment conditions in the Itaipu Reservoir, Brazil. Hydrobiologia, 415(0), 147–154. https://doi.org/10.1023/A:1003856629837
- Camargo, J. A. (2018). Responses of aquatic macrophytes to anthropogenic pressures: Comparison between macrophyte metrics and indices. Environmental Monitoring and Assessment, 190(3), 173. Advance online publication. https://doi.org/10.1007/s10661-018-6549-y PMID:29480431
- Carden, K. M. (2002). Machrophytes as fish habitat: the role of machrophute morphology and bed complexity in fish species distributions (Issue December, p. 167). University of Wisconsin-Stevens Point, College of Natural Resources.
- Carr, G. M., & Chambers, P. A. (1998). Macrophyte growth and sediment phosphorus and nitrogen in a Canadian prairie river. Freshwater Biology, 39(3), 525–536. https://doi.org/10.1046/j.1365-2427.1998.00300.x
- Cataldo, D. A., Schrader, L. E., & Youngs, V. L. (1974). Analysis by Digestion and Colorimetric Assay of Total Nitrogen in Plant Tissues High in Nitrate 1. Crop Science, 14(6), 854– 856. https://doi.org/10.2135/cropsci1974.0011183X001400060024x
- Clarke, S. J. (2002). Vegetation growth in rivers: Influences upon sediment and nutrient dynamics. Progress in Physical Geography, 26(2), 159–172. https://doi.org/10.1191/0309133302pp324ra
- Costa, M. L. R., & Henry, R. (2010). Phosphorus, nitrogen, and carbon contents of macrophytes in lakes lateral to a tropical river (Paranapanema River, São Paulo, Brazil). Acta Limnologica Brasiliensia, 22(02), 122–132. https://doi.org/10.1590/S2179-975X2010000200002
- Cotton, J. A., Wharton, G., Bass, J. A. B., Heppell, C. M., & Wotton, R. S. (2006). The effects of seasonal changes to in-stream vegetation cover on patterns of flow and accumulation of sediment. Geomorphology, 77(3–4), 320–334. https://doi.org/10.1016/j.geomorph.2006.01.010
- De Nardi, F., Puaud, C., Lodé, T., Lecorff, J., Parinet, B., & Pontié, M. (2010). Preliminary diagnosis and prospects for the elimination of phosphorus (P) in excess in Lake Ribou (Cholet, Maine-et-Loire, France). Revue des Sciences de l’Eau, 23(2), 159–171. https://doi.org/10.7202/039907ar
- Denny, P. (1972). Sites of nutrient absorption in aquatic macrophytes. Journal of Ecology, 60, 819–829. https://doi.org/10.2307/2258568
- Dong, B., Qin, B., Gao, G., & Cai, X. (2014). Submerged macrophyte communities and the controlling factors in large, shallow Lake Taihu (China) : Sediment distribution and water depth. Journal of Great Lakes Research, 40, 646–655. Advance online publication. https://doi.org/10.1016/j.jglr.2014.04.007
- Dutartre, A., Haury, J., & Peltre, M.-C. Alain Dutartre, Jacques Haury, & Marie-Christine Peltre. (2008). Plantes aquatiques d’eau douce : biologie, écologie et gestion. Cemagref HS Revue Ingénierie Eau-Agriculture-Territoire, 161. https://books.google.at/books/about/Plantes_aquatiques_d_eau_douce_biologie.html?id=16R4BvZK1HAC&redir_esc=y
- Ensminger, I., Foerster, J., Hagen, C., & Braune, W. (2005). Plasticity and acclimation to light reflected in temporal and spatial changes of small-scale macroalgal distribution in a stream. Journal of Experimental Botany, 56(418), 2047– 2058. https://doi.org/10.1093/jxb/eri203 PMID:15996986
- Fernández-Aláez, C., Fernández-Aláez, M., García-Criado, F., & García-Girón, J. (2018). Environmental drivers of aquatic macrophyte assemblages in ponds along an altitudinal gradient. Hydrobiologia, 812(1), 79–98. https://doi.org/10.1007/s10750-016-2832-5
- Golterman, H. L. B. T.-D. in W. S. (Ed.). (1975). Chapter 5 The phosphate cycle. In Developments in Water Science (Vol. 2, Issue C, pp. 87–98). Elsevier. https://doi.org/10.1016/S0167-5648(08)71062-1
- Gurnell, A. M., Van Oosterhout, M. P., De Vlieger, B., & Goodson, J. M. (2006). Reach-scale interactions between aquatic plants and physical habitat: River Frome, Dorset. River Research and Applications, 22(6), 667–680. https://doi.org/10.1002/rra.929
- Haury, J., Cazaubon, A., Barrat-Segretain, M.-H., Elger, A., & Thiébaut, G. (2008). Analyse multi-compartiments et rôles fonctionnels des macrophytes dans les hydrosystèmes. Ouvrage GIS Ingénieries Eau-Agriculture-Territoires Numéro Spécial Plantes Aquatiques d’eau Douce: Biologie, Écologie et Gestion, 79–90.
- Huang, X., Wang, L., Guan, X., Gao, Y., Liu, C., & Yu, D. (2018). The root structures of 21 aquatic plants in a macrophyte-dominated lake in China. Journal of Plant Ecology, 11(1), 39–46. https://doi.org/10.1093/jpe/rtx018
- Korol, A. R., Ahn, C., & Noe, G. B. (2016). Richness, biomass, and nutrient content of a wetland macrophyte community affect soil nitrogen cycling in a diversity-ecosystem functioning experiment. Ecological Engineering, 95, 252– 265. https://doi.org/10.1016/j.ecoleng.2016.06.057
- Li, W., Li, Y., Zhong, J., Fu, H., Tu, J., & Fan, H. (2018). Submerged Macrophytes Exhibit Different Phosphorus Stoichiometric Homeostasis. In Frontiers in Plant Science (Vol. 9, p. 1207). https://www.frontiersin.org/article/10.3389/fpls.2018.01207 https://doi.org/10.3389/fpls.2018.01207
- Madsen, T. V., & Cedergreen, N. (2002). Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream. Freshwater Biology, 47(2), 283–291. https://doi.org/https://doi.org/10.1046/j.1365-2427.2002.00802.x https://doi.org/10.1046/j.1365-2427.2002.00802.x
- Mebane, C. A., Ray, A. M., & Marcarelli, A. M. (2021). Nutrient limitation of algae and macrophytes in streams: Integrating laboratory bioassays, field experiments, and field data. PLoS ONE, 16(6 June), e0252904. https://doi.org/10.1371/journal.pone.0252904
- Mony, C., Thiébaut, G., & Muller, S. (2007). Changes in morphological and physiological traits of the freshwater plant Ranunculus peltatus with the phosphorus bioavailability. Plant Ecology, 191(1), 109–118. https://doi.org/10.1007/s11258-006-9219-z
- Moura Júnior, E. G., Pott, A., Severi, W., & Zickel, C. S. (2019). Response of aquatic macrophyte biomass to limnological changes under water level fluctuation in tropical reservoirs. Brazilian Journal of Biology, 79(1), 120–126. https://doi.org/10.1590/1519-6984.179656 PMID:29538484
- Muller, S., Peltre, M.-C., Ollivier, M., Petitdidier, D., Thiebaut, G., Dutartre, A., Moreau, A., Mutterlein, C., Barbe, J., & Lagrange, C. (1997). Biologie et écologie des espèces végétales proliférant en France. Les Études de l’agence de l’eau, 68, 199.
- Nouri, A., Hammada, S., & Chillasse, L. (2022). Exploring factors driving macrophytes in rivers—A case study in Middle Atlas Morocco. Ecohydrology, (April), 1–15. https://doi.org/10.1002/eco.2506
- O’Hare, M. T., Baattrup-Pedersen, A., Baumgarte, I., Freeman, A., Gunn, I. D. M., Lázár, A. N., Sinclair, R., Wade, A. J., & Bowes, M. J. (2018). Responses of aquatic plants to eutrophication in rivers: A revised conceptual model. In Frontiers in Plant Science (Vol. 9, pp. 1–13). Issue April., https://doi.org/10.3389/fpls.2018.00451
- Podlasińska, J., Wróbel, M., Szpikowski, J., & Szpikowska, G. (2021). Bioaccumulation of trace metals in Groenlandia densa plant reintroduced in western Pomerania. Processes (Basel, Switzerland), 9(5), 1–12. https://doi.org/10.3390/pr9050808
- Qu, X. D., Yu, Y., Zhang, M., Duan, L. F., & Peng, W. Q. (2018). [Relationship Between Macrophyte Communities and Macroinvertebrate Communities in an Urban Stream]. Huan Jing Ke Xue, 39(2), 783–791. https://doi.org/10.13227/j.hjkx.201708082 PMID:29964842
- Robach, F., Hajnsek, I., Eglin, I., & Trémolières, M. (1995). Phosphorus sources for aquatic macrophytes in running waters: Water or sediment? Acta Botanica Gallica, 142(6), 719–731. https://doi.org/10.1080/12538078.1995.10515296
- Rodier, J. (2009). Jean Rodier - L’analyse de l’eau. In D. 2009 Paris : Dunod (Ed.), International Journal of Biological and Chemical Sciences (9éme Editi, Vol. 1, Issue 1, p. 1579).
- Scheffer, M., Szabó, S., Gragnani, A., Van Nes, E. H., Rinaldi, S., Kautsky, N., Norberg, J., Roijackers, R. M. M., & Franken, R. J. M. (2003). Floating plant dominance as a stable state. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 4040–4045. https://doi.org/10.1073/pnas.0737918100 PMID:12634429
- Shilla, D. A., Asaeda, T., Kian, S., Lalith, R., & Manatunge, J. (2006). Phosphorus concentration in sediment, water and tissues of three submerged macrophytes of Myall Lake, Australia. Wetlands Ecology and Management, 14(6), 549– 558. https://doi.org/10.1007/s11273-006-9007-5
- Stefanidis, K., & Papastergiadou, E. (2019). Linkages between macrophyte functional traits and water quality: Insights from a study in freshwater lakes of Greece. Water (Basel), 11(5), 1047. Advance online publication. https://doi.org/10.3390/w11051047
- Steffen, K. (2013). Habitat ecology and long-term development of the macrophyte vegetation of north-west German streams and rivers since the 1950s. 131. http://ediss.uni-goettingen.de/bitstream/handle/11858/00-1735-0000-0001-BC30-F/Steffen_2013_Dissertation.pdf?sequence=1
- Tan, X., Yuan, G., Fu, H., Peng, H., Ge, D., Lou, Q., & Zhong, J. (2019). Effects of ammonium pulse on the growth of three submerged macrophytes. PLoS One, 14(7), e0219161. https://doi.org/10.1371/journal.pone.0219161 PMID:31339879
- Thiébaut, G. (2005). Does competition for phosphate supply explain the invasion pattern of Elodea species? Water Research, 39(14), 3385–3393. https://doi.org/10.1016/j.watres.2005.05.036 PMID:16026814
- Thiébaut, G. (2008). Phosphorus and aquatic plants. In P. J. White & J. P. Hammond (Eds.), The Ecophysiology of Plant-Phosphorus Interactions (pp. 31–49). Springer Netherlands., https://doi.org/10.1007/978-1-4020-8435-5_3
- Thiebaut, G., & Muller, S. (2003). Linking phosphorus pools of water, sediment and macrophytes in running waters. Annales de Limnologie, 39(4), 307–316. https://doi.org/10.1051/limn/2003025
- Valley, R. D., & Newman, R. M. (1998). Competitive interactions between Eurasian watermilfoil and northern watermilfoil in experimental tanks. Journal of Aquatic Plant Management, 36(2), 121–126.
- Weekes, L., Matson, R., Kelly, F., FitzPatrick, Ú., & Kelly-Quinn, M. (2014). Composition and characteristics of macrophyte assemblages in small streams in Ireland. Biology and Environment, 114B(3), 163–180. https://doi.org/10.1353/bae.2014.0003
- Xing, W., Shi, Q., Liu, H., & Liu, G. (2016). Growth rate, protein: RNA ratio and stoichiometric homeostasis of submerged macrophytes under eutrophication stress. Knowledge and Management of Aquatic Ecosystems, 417, 25. https://doi.org/10.1051/kmae/2016012
- Zhu, M., Zhu, G., Nurminen, L., Wu, T., Deng, J., Zhang, Y., Qin, B., & Ventelä, A. M. (2015). The influence of macrophytes on sediment resuspension and the effect of associated nutrients in a shallow and large lake (Lake Taihu, China). PLoS One, 10(6), e0127915. https://doi.org/10.1371/journal.pone.0127915 PMID:26030094
- Zhu, Z., Song, S., Li, P., Jeelani, N., Wang, P., Yuan, H., Zhang, J., An, S., & Leng, X. (2016). Growth and physiological responses of submerged plant Vallisneria natans to water column ammonia nitrogen and sediment copper. PeerJ, 4, e1953–e1953. https://doi.org/10.7717/peerj.1953 PMID:27123381