Have a personal or library account? Click to login
Nutrient content in tissues of Groenlandia densa, Myriophyllum spicatum and Zannichellia palustris: an attempt to understand the intercompartmental relationships in a small stream in the Middle Atlas Mountains of Morocco Cover

Nutrient content in tissues of Groenlandia densa, Myriophyllum spicatum and Zannichellia palustris: an attempt to understand the intercompartmental relationships in a small stream in the Middle Atlas Mountains of Morocco

Open Access
|Dec 2024

References

  1. Angelstein, S., Wolfram, C., Rann, K., Kiwel, U., Frimel, S., Merbach, I., & Schubert, H. (2009). The influence of different sediment nutrient contents on growth and competition of Elodea nuttallii and Myriophyllum spicatum in nutrient-poor waters. Fundamental and Applied Limnology, 175(1), 49–57. https://doi.org/10.1127/1863-9135/2009/0175-0049
  2. Baattrup-Pedersen, A., Larsen, S. E., & Riis, T. (2002). Long-term effects of stream management on plant communities in two Danish lowland streams. Hydrobiologia, 481(1), 33–45. https://doi.org/10.1023/A:1021296519187
  3. Baethgen, W. E., & Alley, M. M. (1989). A manual colorimetric procedure for measuring ammonium nitrogen in soil and plant kjeldahl digests. Communications in Soil Science and Plant Analysis, 20(9–10), 961–969. https://doi.org/10.1080/00103628909368129
  4. Benkaddour, B. (2018). Contribution à l ’ étude de la contamination des eaux et des sédiments. In These De Doctorat.
  5. Bini, L. M., Thomaz, S. M., Murphy, K. J., & Camargo, A. F. M. (1999). Aquatic macrophyte distribution in relation to water and sediment conditions in the Itaipu Reservoir, Brazil. Hydrobiologia, 415(0), 147–154. https://doi.org/10.1023/A:1003856629837
  6. Camargo, J. A. (2018). Responses of aquatic macrophytes to anthropogenic pressures: Comparison between macrophyte metrics and indices. Environmental Monitoring and Assessment, 190(3), 173. Advance online publication. https://doi.org/10.1007/s10661-018-6549-y PMID:29480431
  7. Carden, K. M. (2002). Machrophytes as fish habitat: the role of machrophute morphology and bed complexity in fish species distributions (Issue December, p. 167). University of Wisconsin-Stevens Point, College of Natural Resources.
  8. Carr, G. M., & Chambers, P. A. (1998). Macrophyte growth and sediment phosphorus and nitrogen in a Canadian prairie river. Freshwater Biology, 39(3), 525–536. https://doi.org/10.1046/j.1365-2427.1998.00300.x
  9. Cataldo, D. A., Schrader, L. E., & Youngs, V. L. (1974). Analysis by Digestion and Colorimetric Assay of Total Nitrogen in Plant Tissues High in Nitrate 1. Crop Science, 14(6), 854– 856. https://doi.org/10.2135/cropsci1974.0011183X001400060024x
  10. Clarke, S. J. (2002). Vegetation growth in rivers: Influences upon sediment and nutrient dynamics. Progress in Physical Geography, 26(2), 159–172. https://doi.org/10.1191/0309133302pp324ra
  11. Costa, M. L. R., & Henry, R. (2010). Phosphorus, nitrogen, and carbon contents of macrophytes in lakes lateral to a tropical river (Paranapanema River, São Paulo, Brazil). Acta Limnologica Brasiliensia, 22(02), 122–132. https://doi.org/10.1590/S2179-975X2010000200002
  12. Cotton, J. A., Wharton, G., Bass, J. A. B., Heppell, C. M., & Wotton, R. S. (2006). The effects of seasonal changes to in-stream vegetation cover on patterns of flow and accumulation of sediment. Geomorphology, 77(3–4), 320–334. https://doi.org/10.1016/j.geomorph.2006.01.010
  13. De Nardi, F., Puaud, C., Lodé, T., Lecorff, J., Parinet, B., & Pontié, M. (2010). Preliminary diagnosis and prospects for the elimination of phosphorus (P) in excess in Lake Ribou (Cholet, Maine-et-Loire, France). Revue des Sciences de l’Eau, 23(2), 159–171. https://doi.org/10.7202/039907ar
  14. Denny, P. (1972). Sites of nutrient absorption in aquatic macrophytes. Journal of Ecology, 60, 819–829. https://doi.org/10.2307/2258568
  15. Dong, B., Qin, B., Gao, G., & Cai, X. (2014). Submerged macrophyte communities and the controlling factors in large, shallow Lake Taihu (China) : Sediment distribution and water depth. Journal of Great Lakes Research, 40, 646–655. Advance online publication. https://doi.org/10.1016/j.jglr.2014.04.007
  16. Dutartre, A., Haury, J., & Peltre, M.-C. Alain Dutartre, Jacques Haury, & Marie-Christine Peltre. (2008). Plantes aquatiques d’eau douce : biologie, écologie et gestion. Cemagref HS Revue Ingénierie Eau-Agriculture-Territoire, 161. https://books.google.at/books/about/Plantes_aquatiques_d_eau_douce_biologie.html?id=16R4BvZK1HAC&redir_esc=y
  17. Ensminger, I., Foerster, J., Hagen, C., & Braune, W. (2005). Plasticity and acclimation to light reflected in temporal and spatial changes of small-scale macroalgal distribution in a stream. Journal of Experimental Botany, 56(418), 2047– 2058. https://doi.org/10.1093/jxb/eri203 PMID:15996986
  18. Fernández-Aláez, C., Fernández-Aláez, M., García-Criado, F., & García-Girón, J. (2018). Environmental drivers of aquatic macrophyte assemblages in ponds along an altitudinal gradient. Hydrobiologia, 812(1), 79–98. https://doi.org/10.1007/s10750-016-2832-5
  19. Golterman, H. L. B. T.-D. in W. S. (Ed.). (1975). Chapter 5 The phosphate cycle. In Developments in Water Science (Vol. 2, Issue C, pp. 87–98). Elsevier. https://doi.org/10.1016/S0167-5648(08)71062-1
  20. Gurnell, A. M., Van Oosterhout, M. P., De Vlieger, B., & Goodson, J. M. (2006). Reach-scale interactions between aquatic plants and physical habitat: River Frome, Dorset. River Research and Applications, 22(6), 667–680. https://doi.org/10.1002/rra.929
  21. Haury, J., Cazaubon, A., Barrat-Segretain, M.-H., Elger, A., & Thiébaut, G. (2008). Analyse multi-compartiments et rôles fonctionnels des macrophytes dans les hydrosystèmes. Ouvrage GIS Ingénieries Eau-Agriculture-Territoires Numéro Spécial Plantes Aquatiques d’eau Douce: Biologie, Écologie et Gestion, 79–90.
  22. Huang, X., Wang, L., Guan, X., Gao, Y., Liu, C., & Yu, D. (2018). The root structures of 21 aquatic plants in a macrophyte-dominated lake in China. Journal of Plant Ecology, 11(1), 39–46. https://doi.org/10.1093/jpe/rtx018
  23. Korol, A. R., Ahn, C., & Noe, G. B. (2016). Richness, biomass, and nutrient content of a wetland macrophyte community affect soil nitrogen cycling in a diversity-ecosystem functioning experiment. Ecological Engineering, 95, 252– 265. https://doi.org/10.1016/j.ecoleng.2016.06.057
  24. Li, W., Li, Y., Zhong, J., Fu, H., Tu, J., & Fan, H. (2018). Submerged Macrophytes Exhibit Different Phosphorus Stoichiometric Homeostasis. In Frontiers in Plant Science (Vol. 9, p. 1207). https://www.frontiersin.org/article/10.3389/fpls.2018.01207 https://doi.org/10.3389/fpls.2018.01207
  25. Madsen, T. V., & Cedergreen, N. (2002). Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream. Freshwater Biology, 47(2), 283–291. https://doi.org/https://doi.org/10.1046/j.1365-2427.2002.00802.x https://doi.org/10.1046/j.1365-2427.2002.00802.x
  26. Mebane, C. A., Ray, A. M., & Marcarelli, A. M. (2021). Nutrient limitation of algae and macrophytes in streams: Integrating laboratory bioassays, field experiments, and field data. PLoS ONE, 16(6 June), e0252904. https://doi.org/10.1371/journal.pone.0252904
  27. Mony, C., Thiébaut, G., & Muller, S. (2007). Changes in morphological and physiological traits of the freshwater plant Ranunculus peltatus with the phosphorus bioavailability. Plant Ecology, 191(1), 109–118. https://doi.org/10.1007/s11258-006-9219-z
  28. Moura Júnior, E. G., Pott, A., Severi, W., & Zickel, C. S. (2019). Response of aquatic macrophyte biomass to limnological changes under water level fluctuation in tropical reservoirs. Brazilian Journal of Biology, 79(1), 120–126. https://doi.org/10.1590/1519-6984.179656 PMID:29538484
  29. Muller, S., Peltre, M.-C., Ollivier, M., Petitdidier, D., Thiebaut, G., Dutartre, A., Moreau, A., Mutterlein, C., Barbe, J., & Lagrange, C. (1997). Biologie et écologie des espèces végétales proliférant en France. Les Études de l’agence de l’eau, 68, 199.
  30. Nouri, A., Hammada, S., & Chillasse, L. (2022). Exploring factors driving macrophytes in rivers—A case study in Middle Atlas Morocco. Ecohydrology, (April), 1–15. https://doi.org/10.1002/eco.2506
  31. O’Hare, M. T., Baattrup-Pedersen, A., Baumgarte, I., Freeman, A., Gunn, I. D. M., Lázár, A. N., Sinclair, R., Wade, A. J., & Bowes, M. J. (2018). Responses of aquatic plants to eutrophication in rivers: A revised conceptual model. In Frontiers in Plant Science (Vol. 9, pp. 1–13). Issue April., https://doi.org/10.3389/fpls.2018.00451
  32. Podlasińska, J., Wróbel, M., Szpikowski, J., & Szpikowska, G. (2021). Bioaccumulation of trace metals in Groenlandia densa plant reintroduced in western Pomerania. Processes (Basel, Switzerland), 9(5), 1–12. https://doi.org/10.3390/pr9050808
  33. Qu, X. D., Yu, Y., Zhang, M., Duan, L. F., & Peng, W. Q. (2018). [Relationship Between Macrophyte Communities and Macroinvertebrate Communities in an Urban Stream]. Huan Jing Ke Xue, 39(2), 783–791. https://doi.org/10.13227/j.hjkx.201708082 PMID:29964842
  34. Robach, F., Hajnsek, I., Eglin, I., & Trémolières, M. (1995). Phosphorus sources for aquatic macrophytes in running waters: Water or sediment? Acta Botanica Gallica, 142(6), 719–731. https://doi.org/10.1080/12538078.1995.10515296
  35. Rodier, J. (2009). Jean Rodier - L’analyse de l’eau. In D. 2009 Paris : Dunod (Ed.), International Journal of Biological and Chemical Sciences (9éme Editi, Vol. 1, Issue 1, p. 1579).
  36. Scheffer, M., Szabó, S., Gragnani, A., Van Nes, E. H., Rinaldi, S., Kautsky, N., Norberg, J., Roijackers, R. M. M., & Franken, R. J. M. (2003). Floating plant dominance as a stable state. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 4040–4045. https://doi.org/10.1073/pnas.0737918100 PMID:12634429
  37. Shilla, D. A., Asaeda, T., Kian, S., Lalith, R., & Manatunge, J. (2006). Phosphorus concentration in sediment, water and tissues of three submerged macrophytes of Myall Lake, Australia. Wetlands Ecology and Management, 14(6), 549– 558. https://doi.org/10.1007/s11273-006-9007-5
  38. Stefanidis, K., & Papastergiadou, E. (2019). Linkages between macrophyte functional traits and water quality: Insights from a study in freshwater lakes of Greece. Water (Basel), 11(5), 1047. Advance online publication. https://doi.org/10.3390/w11051047
  39. Steffen, K. (2013). Habitat ecology and long-term development of the macrophyte vegetation of north-west German streams and rivers since the 1950s. 131. http://ediss.uni-goettingen.de/bitstream/handle/11858/00-1735-0000-0001-BC30-F/Steffen_2013_Dissertation.pdf?sequence=1
  40. Tan, X., Yuan, G., Fu, H., Peng, H., Ge, D., Lou, Q., & Zhong, J. (2019). Effects of ammonium pulse on the growth of three submerged macrophytes. PLoS One, 14(7), e0219161. https://doi.org/10.1371/journal.pone.0219161 PMID:31339879
  41. Thiébaut, G. (2005). Does competition for phosphate supply explain the invasion pattern of Elodea species? Water Research, 39(14), 3385–3393. https://doi.org/10.1016/j.watres.2005.05.036 PMID:16026814
  42. Thiébaut, G. (2008). Phosphorus and aquatic plants. In P. J. White & J. P. Hammond (Eds.), The Ecophysiology of Plant-Phosphorus Interactions (pp. 31–49). Springer Netherlands., https://doi.org/10.1007/978-1-4020-8435-5_3
  43. Thiebaut, G., & Muller, S. (2003). Linking phosphorus pools of water, sediment and macrophytes in running waters. Annales de Limnologie, 39(4), 307–316. https://doi.org/10.1051/limn/2003025
  44. Valley, R. D., & Newman, R. M. (1998). Competitive interactions between Eurasian watermilfoil and northern watermilfoil in experimental tanks. Journal of Aquatic Plant Management, 36(2), 121–126.
  45. Weekes, L., Matson, R., Kelly, F., FitzPatrick, Ú., & Kelly-Quinn, M. (2014). Composition and characteristics of macrophyte assemblages in small streams in Ireland. Biology and Environment, 114B(3), 163–180. https://doi.org/10.1353/bae.2014.0003
  46. Xing, W., Shi, Q., Liu, H., & Liu, G. (2016). Growth rate, protein: RNA ratio and stoichiometric homeostasis of submerged macrophytes under eutrophication stress. Knowledge and Management of Aquatic Ecosystems, 417, 25. https://doi.org/10.1051/kmae/2016012
  47. Zhu, M., Zhu, G., Nurminen, L., Wu, T., Deng, J., Zhang, Y., Qin, B., & Ventelä, A. M. (2015). The influence of macrophytes on sediment resuspension and the effect of associated nutrients in a shallow and large lake (Lake Taihu, China). PLoS One, 10(6), e0127915. https://doi.org/10.1371/journal.pone.0127915 PMID:26030094
  48. Zhu, Z., Song, S., Li, P., Jeelani, N., Wang, P., Yuan, H., Zhang, J., An, S., & Leng, X. (2016). Growth and physiological responses of submerged plant Vallisneria natans to water column ammonia nitrogen and sediment copper. PeerJ, 4, e1953–e1953. https://doi.org/10.7717/peerj.1953 PMID:27123381
DOI: https://doi.org/10.26881/oahs-2024.4.03 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 355 - 364
Submitted on: Apr 10, 2024
Accepted on: Jun 27, 2024
Published on: Dec 21, 2024
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Ayoub Nouri, Abdesslam Bihaoui, Soumaya Hammada, Lahcen Chillasse, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.