Have a personal or library account? Click to login
Are conventional methods sufficient to calculate growth parameters of Pontastacus leptodactylus (Eschscholtz, 1823)? A case study of artificial intelligence from Keban Dam Lake Cover

Are conventional methods sufficient to calculate growth parameters of Pontastacus leptodactylus (Eschscholtz, 1823)? A case study of artificial intelligence from Keban Dam Lake

By: Semra Benzer and  Recep Benzer  
Open Access
|Dec 2024

References

  1. Alekhnovich, A. (2021). Characteristics of populations of narrow-clawed crayfish Pontastacus leptodactylus in three Belarusian lakes of the Baltic sea catchment area. Baltic Coastal Zone, 25, 19–30.
  2. Alvanou, M. V., Papadopoulos, D. K., Lattos, A., Georgoulis, I., Feidantsis, K., Apostolidis, A. P., Michaelidis, B., & Giantsis, I. A. (2022). Biology, distribution, conservation status and stocking perspective of freshwater crayfish in Greece: An updated review. Aquaculture Research, 53(15), 5115–5128. https://doi.org/10.1111/are.16009
  3. Aydın, H., Harlioglu, M. M., & Deniz, T. (2015). An investigation on the population parameters of freshwater crayfish (Astacus leptodactylus Esch., 1823) in Lake Iznik (Bursa). Turkish Journal of Zoology, 39(4), 660–668. https://doi.org/10.3906/zoo-1406-6
  4. Balık, S., Ustaoğlu, M. R., Sarı, H. M., & Berber, S. (2005). Determination of traits some growth and morphometric of crayfish (Astacus leptodactylus Eschscholtz, 1823) at Demirköprü Dam Lake (Manisa). [in Turkish]. Ege Journal of Fisheries and Aquatic Sciences, 22(1-2), 83–89.
  5. Benzer, R., & Benzer, S. (2020). Alternative approaches to traditional methods for growth parameters of fisheries industry: Artificial Neural Networks. Enterprise & Business Management: A Handbook for Educators. Consultants, and Practitioners.
  6. Benzer, S., Benli, Ç. K., & Benzer, R. (2015). The comparison of growth with length-weight relation and artificial neural networks of crayfish, Astacus leptodactylus, in Mogan Lake. Journal of the Black Sea/Mediterranean Environment, 21(2), 208–223.
  7. Benzer, S., & Benzer, R. (2015). Determine some morphological characteristics of crayfish (Astacus leptodactylus Eschscholtz, 1823) with traditional methods and artificial neural networks in Dikilitas Pond, Ankara, Turkey. Fresenius Environmental Bulletin, 24(11A), 3727–3735.
  8. Benzer, S., Benzer, R., & Günal, A. (2017a). Artificial neural networks approach in length-weight relation of crayfish (Astacus leptodactylus Eschscholtz, 1823) in Eğirdir Lake, Isparta, Turkey. Journal of Coastal Life Medicine, 5(8), 330– 335. https://doi.org/10.12980/jclm.5.2017J7-19
  9. Benzer, S., Benzer, R., & Günal, A. (2017b). Artificial neural networks approach in morphometric analysis of crayfish (Astacus leptodactylus) in Hirfanlı Dam Lake. Biologia, 72(5), 527–535. https://doi.org/10.1515/biolog-2017-0052
  10. Benzer, S., & Benzer, R. (2018). New perspectives for predicting growth properties of crayfish (Astacus leptodactylus Eschscholtz, 1823) in Uluabat Lake. Pakistan Journal of Zoology, 50(1), 35–45.
  11. Benzer, S., & Benzer, R. (2022). Morphometric analysis of Crayfish–traditional and artificial intelligent approach. Thalassas, 38(2), 989–996. https://doi.org/10.1007/s41208-022-00447-z
  12. Bouckaert, R. R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A., & Scuse, D. (2016). WEKA manual for version 3-9-1. University of Waikato.
  13. Crandall, K. A., & De Grave, S. (2017). An updated classification of the freshwater crayfishes (Decapoda: Astacidea) of the world, with a complete species list. Journal of Crustacean Biology, 37(5), 615–653. https://doi.org/10.1093/jcbiol/rux070
  14. DSI. (1982). Keban Fishery Project Aquaculture Turkey. IDRC 3- P-75-0034. General Directorate of State Hydraulic Works Reports. Turkish.
  15. Flinn, S. A., & Midway, S. R. (2021). Trends in growth modeling in fisheries science. Fishes, 6(1), 1-18. https://doi.org/10.3390/fishes6010001
  16. Galib, S. M., Sun, J., Gröcke, D. R., & Lucas, M. C. (2022). Ecosystem effects of invasive crayfish increase with crayfish density. Freshwater Biology, 67(6), 1005–1019. https://doi.org/10.1111/fwb.13897
  17. Hossain, M. S., Kouba, A., & Buřič, M. (2019). Morphometry, size at maturity, and fecundity of marbled crayfish (Procambarus virginalis). Zoologischer Anzeiger, 281, 68–75. https://doi.org/10.1016/j.jcz.2019.06.005
  18. Lu, W., Li, P., Ma, B., Huo, T., Yin, Z., Tang, F., & Wang, J. (2023). Assessment of fishery management parameters for major prey fish species in the lower reaches of the Songhua River. Frontiers in Marine Science, 10, 1166634. https://doi.org/10.3389/fmars.2023.1166634
  19. May, R., Dandy, G., & Maier, H. (2011). Review of input variable selection methods for artificial neural networks. Artificial neural networks-methodological advances and biomedical applications, 10(1), 19-45. https://doi.org/10.5772/16004
  20. Mazlum, Y., Can, M. F., & Öksüz, A. (2019). Diversification of narrow-clawed crayfish (Pontastacus leptodactylus Eschscholtz, 1823) populations from different parts of Turkey. Marine and Life Sciences, 1(1), 1–9.
  21. Misra, N. N., Dixit, Y., Al-Mallahi, A., Bhullar, M. S., Upadhyay, R., & Martynenko, A. (2020). IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet of Things Journal, 9(9), 6305–6324. Advance online publication. https://doi.org/10.1109/JIOT.2020.2998584
  22. Montaño Moreno, J. J., Palmer Pol, A., Sesé Abad, A., & Cajal Blasco, B. (2013). Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema, 25(4), 500–506. https://doi.org/10.7334/psicothema2013.23 PMID:24124784
  23. Naz, S., & Chatha, A. M. M. (2023). Efficacy of Insect Feed as Protein Source in Aqua Feed and its Impact on Growth Performance of Fish. BioScientific Review, 5(2), 39–49. https://doi.org/10.32350/BSR.52.05
  24. Pauly, D., & Morgan, G. R. (Eds.). (1987). Length-based methods in fisheries research (Vol. 13). WorldFish.
  25. Rahman, M. A., Manon, M. R. K., Ullah, M. R., Alam, A., Islam, M. J., Siddik, M. A. B., & Iqbal, M. M. (2023). Biometric indices, growth pattern, and physiological status of captive-reared indigenous Yellowtail brood catfish, Pangasius pangasius (Hamilton, 1822). Environmental Science and Pollution Research International, 30, 83388–83400. https://doi.org/10.1007/s11356-023-28328-9 PMID:37340162
  26. Roljić, R., Nikolić, V., & Savić, N. (2019). Morphological Variability and Sexual Dimorphism of Danube Crayfish Pontastacus leptodactylus Eschscholtz, 1823 from the Vrbas River. Water Resources Management, 9(2), 27–32.
  27. Saemi-Komsari, M., Esmaeili, H. R., Keshavarzi, B., Abbasi, K., Birami, F. A., Nematollahi, M. J., Tayefeh, F. H., & Busquets, R. (2023). Characterization of ingested MPs and their relation with growth parameters of endemic and invasive fish from a coastal wetland. The Science of the Total Environment, 860, 160495. https://doi.org/10.1016/j.scitotenv.2022.160495 PMID:36455731
  28. Shaaban, E., El-Sayed, A., El Feky, F., Gawad, A., Soad, M., & Mohammed, N. H. (2021). Spatial Variations in The Length-Weight Relationship and Relative Condition Factor of The Introduced Freshwater Crayfish, Procambarus clarkii,(Girard, 1852) from the River Nile and Its Tributaries, Egypt. Egyptian Academic Journal of Biological Sciences. B, Zoology, 13(2), 135–146. https://doi.org/10.21608/eajbsz.2021.201694
  29. Sholahuddin, A., Ramadhan, A. P., & Supriatna, A. K. (2015). The application of ANN-Linear Perceptron in the development of DSS for a fishery industry. Procedia Computer Science, 72(2015), 67–77. https://doi.org/10.1016/j.procs.2015.12.106
  30. Sun, Q., Zhang, M., Zhou, L., Garme, K., & Burman, M. (2022). A machine learning-based method for prediction of ship performance in ice: Part I. ice resistance. Marine Structures, 83, 103181. https://doi.org/10.1016/j.marstruc.2022.103181
  31. Suryanarayana, I., Braibanti, A., Rao, R. S., Ramam, V. A., Sudarsan, D., & Rao, G. N. (2008). Neural networks in fisheries research. Fisheries Research, 92(2-3), 115–139. https://doi.org/10.1016/j.fishres.2008.01.012
  32. Wang, Q., Yang, J. X., Zhou, G. Q., Zhu, Y. A., & Shan, H. (2011). Length–weight and chelae length–width relationships of the crayfish Procambarus clarkii under culture conditions. Journal of Freshwater Ecology, 26(2), 287–294. https://doi.org/10.1080/02705060.2011.564380
  33. Wang, W., & Lu, Y. (2018). Analysis of the mean absolute error (MAE) and the root mean square error (RMSE) in assessing rounding model. In IOP conference series: Materials Science and Engineering 324, 012049. IOP Publishing., https://doi.org/10.1088/1757-899X/324/1/012049
DOI: https://doi.org/10.26881/oahs-2024.4.02 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 346 - 354
Submitted on: Jul 30, 2023
Accepted on: Apr 30, 2024
Published on: Dec 21, 2024
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Semra Benzer, Recep Benzer, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.